BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16408637)

  • 1. [Changes in the electromechanical activity in the course of tetanic contraction].
    Nasledov GA; Katina IE; Zhitnikova IuV
    Ross Fiziol Zh Im I M Sechenova; 2005 Nov; 91(11):1288-98. PubMed ID: 16408637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Functioning of the electromechanical connection in the course of the contracture contraction].
    Nasledov GA; Katina IE; Kobzeva MA
    Ross Fiziol Zh Im I M Sechenova; 2004 Mar; 90(3):327-38. PubMed ID: 15152567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the functioning of the electromechanical connection during tetanic contraction.
    Nasledov GA; Katina IE; Zhitnikova YV
    Neurosci Behav Physiol; 2007 Feb; 37(2):153-9. PubMed ID: 17187207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dantrolene on steps of excitation-contraction coupling in mammalian skeletal muscle fibers.
    Szentesi P; Collet C; Sárközi S; Szegedi C; Jona I; Jacquemond V; Kovács L; Csernoch L
    J Gen Physiol; 2001 Oct; 118(4):355-75. PubMed ID: 11585849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Characteristics of functioning of electromechanical coupling in striated muscles of higher and lower vertebrates].
    Nasledov GA; Katina IE; Zhitnikova IuV
    Biofizika; 2002; 47(4):716-27. PubMed ID: 12298213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of dantrolene and its derivatives on Ca(2+) release from the sarcoplasmic reticulum of mouse skeletal muscle fibres.
    Ikemoto T; Hosoya T; Aoyama H; Kihara Y; Suzuki M; Endo M
    Br J Pharmacol; 2001 Oct; 134(4):729-36. PubMed ID: 11606312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of agonists and antagonists of rhyanodine receptors on potassium contractures in twitch and tonic frog skeletal muscle fibers].
    Katina IE; Nasledov GA
    Biofizika; 2006; 51(5):898-905. PubMed ID: 17131831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.
    Pitake S; Ochs RS
    Exp Biol Med (Maywood); 2016 Apr; 241(8):854-62. PubMed ID: 26643865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ryanodine receptor agonist 4-chloro-m-cresol on myoplasmic free Ca2+ concentration and force of contraction in mouse skeletal muscle.
    Westerblad H; Andrade FH; Islam MS
    Cell Calcium; 1998 Aug; 24(2):105-15. PubMed ID: 9803311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A surface potential change in the membranes of frog skeletal muscle is associated with excitation-contraction coupling.
    Jong DS; Stroffekova K; Heiny JA
    J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):787-808. PubMed ID: 9130173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the sarcoplasmic reticulum in regulating the activity-dependent expression of the glycogen phosphorylase gene in contractile skeletal muscle cells.
    Vali S; Carlsen R; Pessah I; Gorin F
    J Cell Physiol; 2000 Nov; 185(2):184-99. PubMed ID: 11025440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres.
    Lipská E; Radzyukevich T
    Gen Physiol Biophys; 1999 Jun; 18(2):139-53. PubMed ID: 10517289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle.
    Wright DC; Geiger PC; Holloszy JO; Han DH
    Am J Physiol Endocrinol Metab; 2005 Jun; 288(6):E1062-6. PubMed ID: 15657088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How well do muscle biomechanics predict whole-animal locomotor performance? The role of Ca2+ handling.
    Seebacher F; Pollard SR; James RS
    J Exp Biol; 2012 Jun; 215(Pt 11):1847-53. PubMed ID: 22573763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dantrolene analogues revisited: general synthesis and specific functions capable of discriminating two kinds of Ca2+ release from sarcoplasmic reticulum of mouse skeletal muscle.
    Hosoya T; Aoyama H; Ikemoto T; Kihara Y; Hiramatsu T; Endo M; Suzuki M
    Bioorg Med Chem; 2003 Mar; 11(5):663-73. PubMed ID: 12537995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The role of extracellular calcium in regulating the contraction of the developing musculature in the frog Rana temporaria].
    Radziukevich TL
    Zh Evol Biokhim Fiziol; 1996; 32(3):284-91. PubMed ID: 9148615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclopiazonic acid and thapsigargin reduce Ca2+ influx in frog skeletal muscle fibres as a result of Ca2+ store depletion.
    Même W; Léoty C
    Acta Physiol Scand; 2001 Dec; 173(4):391-9. PubMed ID: 11903131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of modulators of sarcoplasmic Ca2+ release on the development of skeletal muscle fatigue.
    Germinario E; Esposito A; Megighian A; Midrio M; Betto R; Danieli-Betto D
    J Appl Physiol (1985); 2004 Feb; 96(2):645-9. PubMed ID: 14715683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in voltage activation of contraction in frog skeletal muscle fibres as a result of sarcoplasmic reticulum Ca2+-ATPase activity.
    Même W; Léoty C
    Acta Physiol Scand; 1999 Jul; 166(3):209-16. PubMed ID: 10468657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered elementary calcium release events and enhanced calcium release by thymol in rat skeletal muscle.
    Szentesi P; Szappanos H; Szegedi C; Gönczi M; Jona I; Cseri J; Kovács L; Csernoch L
    Biophys J; 2004 Mar; 86(3):1436-53. PubMed ID: 14990472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.