These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions. GumĂ-Audenis B; CarlĂ F; Vitorino MV; Panzarella A; Porcar L; Boilot M; Guerber S; Bernard P; Rodrigues MS; Sanz F; Giannotti MI; Costa L J Synchrotron Radiat; 2015 Nov; 22(6):1364-71. PubMed ID: 26524300 [TBL] [Abstract][Full Text] [Related]
44. Probing cell surface interactions using atomic force microscope cantilevers functionalized for quantum dot-enabled Forster resonance energy transfer. Sun Z; Juriani A; Meininger GA; Meissner KE J Biomed Opt; 2009; 14(4):040502. PubMed ID: 19725707 [TBL] [Abstract][Full Text] [Related]
45. Forcing a connection: impacts of single-molecule force spectroscopy on in vivo tension sensing. Brenner MD; Zhou R; Ha T Biopolymers; 2011 May; 95(5):332-44. PubMed ID: 21267988 [TBL] [Abstract][Full Text] [Related]
46. Development and testing of hyperbaric atomic force microscopy (AFM) and fluorescence microscopy for biological applications. D'Agostino DP; McNally HA; Dean JB J Microsc; 2012 May; 246(2):129-42. PubMed ID: 22455392 [TBL] [Abstract][Full Text] [Related]
47. Two-axis probing system for atomic force microscopy. Jayanth GR; Jhiang SM; Menq CH Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023705. PubMed ID: 18315303 [TBL] [Abstract][Full Text] [Related]
48. Investigating piconewton forces in cells by FRET-based molecular force microscopy. Freikamp A; Mehlich A; Klingner C; Grashoff C J Struct Biol; 2017 Jan; 197(1):37-42. PubMed ID: 26980477 [TBL] [Abstract][Full Text] [Related]
49. Spectral wide-field microscopic fluorescence resonance energy transfer imaging in live cells. Zhang L; Qin G; Chai L; Zhang J; Yang F; Yang H; Xie S; Chen T J Biomed Opt; 2015 Aug; 20(8):86011. PubMed ID: 26280539 [TBL] [Abstract][Full Text] [Related]
50. Direct measurement of cantilever spring constants and correction for cantilever irregularities using an instrumented indenter. Ying ZC; Reitsma MG; Gates RS Rev Sci Instrum; 2007 Jun; 78(6):063708. PubMed ID: 17614617 [TBL] [Abstract][Full Text] [Related]
51. Single-photon atomic force microscopy. Jun Z Anal Bioanal Chem; 2010 Jun; 397(3):987-90. PubMed ID: 20066528 [TBL] [Abstract][Full Text] [Related]
52. Total internal reflection fluorescence microscopy: technical innovations and novel applications. Schneckenburger H Curr Opin Biotechnol; 2005 Feb; 16(1):13-8. PubMed ID: 15722010 [TBL] [Abstract][Full Text] [Related]
53. Imaging F-actin in fixed glial cells with a combined optical fluorescence/atomic force microscope. Henderson E; Sakaguchi DS Neuroimage; 1993 Sep; 1(2):145-50. PubMed ID: 9343565 [TBL] [Abstract][Full Text] [Related]
54. Imaging and probing cell mechanical properties with the atomic force microscope. Costa KD Methods Mol Biol; 2006; 319():331-61. PubMed ID: 16719364 [TBL] [Abstract][Full Text] [Related]
55. Imaging and analyzing the elasticity of vascular smooth muscle cells by atomic force acoustic microscope. Zhang B; Cheng Q; Chen M; Yao W; Qian M; Hu B Ultrasound Med Biol; 2012 Aug; 38(8):1383-90. PubMed ID: 22698505 [TBL] [Abstract][Full Text] [Related]
56. A novel micro tensile tester with feed-back control for viscoelastic analysis of single isolated smooth muscle cells. Nagayama K; Yanagihara S; Matsumoto T Med Eng Phys; 2007 Jun; 29(5):620-8. PubMed ID: 17123857 [TBL] [Abstract][Full Text] [Related]
57. Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET. Zhong W; Wu M; Chang CW; Merrick KA; Merajver SD; Mycek MA Opt Express; 2007 Dec; 15(26):18220-35. PubMed ID: 19551120 [TBL] [Abstract][Full Text] [Related]
58. Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers. Singer W; Frick M; Haller T; Bernet S; Ritsch-Marte M; Dietl P Biophys J; 2003 Feb; 84(2 Pt 1):1344-51. PubMed ID: 12547815 [TBL] [Abstract][Full Text] [Related]
59. Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope. Cartagena-Rivera AX; Wang WH; Geahlen RL; Raman A Sci Rep; 2015 Jun; 5():11692. PubMed ID: 26118423 [TBL] [Abstract][Full Text] [Related]
60. An atomic force microscope tip designed to measure time-varying nanomechanical forces. Sahin O; Magonov S; Su C; Quate CF; Solgaard O Nat Nanotechnol; 2007 Aug; 2(8):507-14. PubMed ID: 18654349 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]