BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16409628)

  • 1. Automatic discovery of cross-family sequence features associated with protein function.
    Brameier M; Haan J; Krings A; MacCallum RM
    BMC Bioinformatics; 2006 Jan; 7():16. PubMed ID: 16409628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting protein function by machine learning on amino acid sequences--a critical evaluation.
    Al-Shahib A; Breitling R; Gilbert DR
    BMC Genomics; 2007 Mar; 8():78. PubMed ID: 17374164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization.
    Chou KC; Shen HB
    Biochem Biophys Res Commun; 2006 Aug; 347(1):150-7. PubMed ID: 16808903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ProLoc-GO: utilizing informative Gene Ontology terms for sequence-based prediction of protein subcellular localization.
    Huang WL; Tung CW; Ho SW; Hwang SF; Ho SY
    BMC Bioinformatics; 2008 Feb; 9():80. PubMed ID: 18241343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-support vector machines for computational proteomics.
    Yang ZR; Chou KC
    Bioinformatics; 2004 Mar; 20(5):735-41. PubMed ID: 14751989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FGsub: Fusarium graminearum protein subcellular localizations predicted from primary structures.
    Sun C; Zhao XM; Tang W; Chen L
    BMC Syst Biol; 2010 Sep; 4 Suppl 2(Suppl 2):S12. PubMed ID: 20840726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruleminer: a knowledge system for supporting high-throughput protein function annotations.
    Yu GX
    J Bioinform Comput Biol; 2004 Dec; 2(4):615-37. PubMed ID: 15617156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families.
    Austin RS; Provart NJ; Cutler SR
    BMC Genomics; 2007 Jun; 8():191. PubMed ID: 17594486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties.
    Petrova NV; Wu CH
    BMC Bioinformatics; 2006 Jun; 7():312. PubMed ID: 16790052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting protein structure classes from function predictions.
    Sommer I; Rahnenführer J; Domingues FS; de Lichtenberg U; Lengauer T
    Bioinformatics; 2004 Mar; 20(5):770-6. PubMed ID: 14751994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A correlated motif approach for finding short linear motifs from protein interaction networks.
    Tan SH; Hugo W; Sung WK; Ng SK
    BMC Bioinformatics; 2006 Nov; 7():502. PubMed ID: 17107624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MACSIMS: multiple alignment of complete sequences information management system.
    Thompson JD; Muller A; Waterhouse A; Procter J; Barton GJ; Plewniak F; Poch O
    BMC Bioinformatics; 2006 Jun; 7():318. PubMed ID: 16792820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering sequence motifs.
    Bailey TL
    Methods Mol Biol; 2008; 452():231-51. PubMed ID: 18566768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach.
    Andorf C; Dobbs D; Honavar V
    BMC Bioinformatics; 2007 Aug; 8():284. PubMed ID: 17683567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein subcellular locations using a new measure of information discrepancy.
    Jin L; Tang H; Fang W
    J Bioinform Comput Biol; 2005 Aug; 3(4):915-27. PubMed ID: 16078367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global sequence properties for superfamily prediction: a machine learning approach.
    Dobson RJ; Munroe PB; Caulfield MJ; Saqi MA
    J Integr Bioinform; 2009 Aug; 6(1):109. PubMed ID: 20134076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical learning architecture with automatic feature selection for multiclass protein fold classification.
    Huang CD; Lin CT; Pal NR
    IEEE Trans Nanobioscience; 2003 Dec; 2(4):221-32. PubMed ID: 15376912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature selection and the class imbalance problem in predicting protein function from sequence.
    Al-Shahib A; Breitling R; Gilbert D
    Appl Bioinformatics; 2005; 4(3):195-203. PubMed ID: 16231961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A functional hierarchical organization of the protein sequence space.
    Kaplan N; Friedlich M; Fromer M; Linial M
    BMC Bioinformatics; 2004 Dec; 5():196. PubMed ID: 15596019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.