BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16410291)

  • 21. Age-dependent potassium iodide effect on the thyroid irradiation by 131I and 133I in the nuclear emergency.
    Jang M; Kim HK; Choi CW; Kang CS
    Radiat Prot Dosimetry; 2008; 130(4):499-502. PubMed ID: 18337292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Review of methods of dose estimation for epidemiological studies of the radiological impact of nevada test site and global fallout.
    Beck HL; Anspaugh LR; Bouville A; Simon SL
    Radiat Res; 2006 Jul; 166(1 Pt 2):209-18. PubMed ID: 16808609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimation of the contribution of short-lived radioiodines to the thyroid dose for the public in case of inhalation intake following the Fukushima accident.
    Shinkarev SM; Kotenko KV; Granovskaya EO; Yatsenko VN; Imanaka T; Hoshi M
    Radiat Prot Dosimetry; 2015 Apr; 164(1-2):51-6. PubMed ID: 25394649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ICRP protection quantities, equivalent and effective dose: their basis and application.
    Harrison JD; Streffer C
    Radiat Prot Dosimetry; 2007; 127(1-4):12-8. PubMed ID: 18003712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiation doses and risks from internal emitters.
    Harrison J; Day P
    J Radiol Prot; 2008 Jun; 28(2):137-59. PubMed ID: 18495991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thyroid dosimetry in the western trace of the Chernobyl accident plume.
    Nedveckaite T; Filistovic V; Mastauskas A; Thiessen K
    Radiat Prot Dosimetry; 2004; 108(2):133-41. PubMed ID: 14978293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective dose scaling factors for use with uranium series cascade impactor data: a reassessment using the IMBA code.
    Kim KP; Wu CY; Birky BK; Bolch WE
    Health Phys; 2006 Oct; 91(4):331-7. PubMed ID: 16966876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impacts of stable element intake on 14C and 129I dose estimates.
    Moeller DW; Ryan MT; Sun LS; Cherry RN
    Health Phys; 2005 Oct; 89(4):349-54. PubMed ID: 16155456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A cohort study of thyroid cancer and other thyroid diseases after the chornobyl accident: thyroid cancer in Ukraine detected during first screening.
    Tronko MD; Howe GR; Bogdanova TI; Bouville AC; Epstein OV; Brill AB; Likhtarev IA; Fink DJ; Markov VV; Greenebaum E; Olijnyk VA; Masnyk IJ; Shpak VM; McConnell RJ; Tereshchenko VP; Robbins J; Zvinchuk OV; Zablotska LB; Hatch M; Luckyanov NK; Ron E; Thomas TL; Voillequé PG; Beebe GW
    J Natl Cancer Inst; 2006 Jul; 98(13):897-903. PubMed ID: 16818853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term carbimazole intake does not affect success rate of radioactive 131Iodine in treatment of Graves' hyperthyroidism.
    El Refaei SM; Shawkat W
    Nucl Med Commun; 2008 Jul; 29(7):642-8. PubMed ID: 18528187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of thyroid radiation doses for the hanford thyroid disease study: results and implications for statistical power of the epidemiological analyses.
    Kopecky KJ; Davis S; Hamilton TE; Saporito MS; Onstad LE
    Health Phys; 2004 Jul; 87(1):15-32. PubMed ID: 15194919
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radon exposure assessment and dosimetry applied to epidemiology and risk estimation.
    Puskin JS; James AC
    Radiat Res; 2006 Jul; 166(1 Pt 2):193-208. PubMed ID: 16808608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of the uncertainty in internal dose estimate resulting from biological stochastic variability of excretion.
    Molokanov A; Blanchardon E
    Radiat Prot Dosimetry; 2007; 125(1-4):561-4. PubMed ID: 17848381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 131I ablation treatment in young females after the Chernobyl accident.
    Travis CC; Stabin MG
    J Nucl Med; 2006 Oct; 47(10):1723-7. PubMed ID: 17015910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of methods of estimation of lifetime cancer risk due to chronic exposure to transuranics.
    McMillan KL; Kaye WR; Kearfott KJ
    Health Phys; 2011 Dec; 101(6):693-702. PubMed ID: 22048487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced iodide transport (stunning) and DNA synthesis in thyrocytes exposed to low absorbed doses from 131I in vitro.
    Lundh C; Nordén MM; Nilsson M; Forssell-Aronsson E
    J Nucl Med; 2007 Mar; 48(3):481-6. PubMed ID: 17332627
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Influence of stable iodine on the uptake of the thyroid--model versus experiment].
    Weber K; Wellner U; Voth E; Schicha H
    Nuklearmedizin; 2001 Feb; 40(1):31-7. PubMed ID: 11373936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Evaluation of equivalent body burden in the thyroid for the people of Poland on results of 131I absorption after the disaster in Czernobyl. Determination of thyroid blockade with potassium iodide].
    Krajewski P
    Endokrynol Pol; 1991; 42(2):189-202. PubMed ID: 1364472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Internal dose assessment of natural uranium from drinking water based on biokinetic modeling and individual bioassay monitoring: a study of a Finnish family.
    Li WB; Salonen L; Muikku M; Wahl W; Höllriegl V; Oeh U; Roth P; Rahola T
    Health Phys; 2006 Jun; 90(6):533-43. PubMed ID: 16691101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of I131 doses absorbed by the thyroid in the period from May to June 1986.
    Chaś J; Bałtrukiewicz Z
    Acta Physiol Pol; 1987; 38(4):367-70. PubMed ID: 3452972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.