BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 1641040)

  • 1. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum.
    Sandvig K; Garred O; Prydz K; Kozlov JV; Hansen SH; van Deurs B
    Nature; 1992 Aug; 358(6386):510-2. PubMed ID: 1641040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient endosome-to-Golgi transport of Shiga toxin is dependent on dynamin and clathrin.
    Lauvrak SU; Torgersen ML; Sandvig K
    J Cell Sci; 2004 May; 117(Pt 11):2321-31. PubMed ID: 15126632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP.
    Sandvig K; Ryd M; Garred O; Schweda E; Holm PK; van Deurs B
    J Cell Biol; 1994 Jul; 126(1):53-64. PubMed ID: 8027186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endocytosis and retrograde transport of Shiga toxin.
    Sandvig K; Bergan J; Dyve AB; Skotland T; Torgersen ML
    Toxicon; 2010 Dec; 56(7):1181-5. PubMed ID: 19951719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of processing and intracellular transport for optimal toxicity of Shiga toxin and toxin mutants.
    Garred O; Dubinina E; Holm PK; Olsnes S; van Deurs B; Kozlov JV; Sandvig K
    Exp Cell Res; 1995 May; 218(1):39-49. PubMed ID: 7737376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum.
    McKenzie J; Johannes L; Taguchi T; Sheff D
    FEBS J; 2009 Mar; 276(6):1581-95. PubMed ID: 19220458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathways followed by ricin and Shiga toxin into cells.
    Sandvig K; Grimmer S; Lauvrak SU; Torgersen ML; Skretting G; van Deurs B; Iversen TG
    Histochem Cell Biol; 2002 Feb; 117(2):131-41. PubMed ID: 11935289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous behavior of cells with respect to induction of retrograde transport from the trans-Golgi network to the Golgi upon inhibition of the vacuolar proton pump.
    van Weert AW; Geuze HJ; Stoorvogel W
    Eur J Cell Biol; 1997 Dec; 74(4):417-23. PubMed ID: 9438139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular targeting of the endoplasmic reticulum/nuclear envelope by retrograde transport may determine cell hypersensitivity to verotoxin via globotriaosyl ceramide fatty acid isoform traffic.
    Arab S; Lingwood CA
    J Cell Physiol; 1998 Dec; 177(4):646-60. PubMed ID: 10092217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum?
    Johannes L; Goud B
    Trends Cell Biol; 1998 Apr; 8(4):158-62. PubMed ID: 9695830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin.
    Lieu ZZ; Gleeson PA
    Eur J Cell Biol; 2010 May; 89(5):379-93. PubMed ID: 20138391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNX1 and SNX2 mediate retrograde transport of Shiga toxin.
    Utskarpen A; Slagsvold HH; Dyve AB; Skånland SS; Sandvig K
    Biochem Biophys Res Commun; 2007 Jun; 358(2):566-70. PubMed ID: 17498660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorting nexin 8 regulates endosome-to-Golgi transport.
    Dyve AB; Bergan J; Utskarpen A; Sandvig K
    Biochem Biophys Res Commun; 2009 Dec; 390(1):109-14. PubMed ID: 19782049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyunsaturated fatty acids regulate Shiga toxin transport.
    Spilsberg B; Llorente A; Sandvig K
    Biochem Biophys Res Commun; 2007 Dec; 364(2):283-8. PubMed ID: 17942073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network.
    Bujny MV; Popoff V; Johannes L; Cullen PJ
    J Cell Sci; 2007 Jun; 120(Pt 12):2010-21. PubMed ID: 17550970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of glycolipid synthesis for butyric acid-induced sensitization to shiga toxin and intracellular sorting of toxin in A431 cells.
    Sandvig K; Garred O; van Helvoort A; van Meer G; van Deurs B
    Mol Biol Cell; 1996 Sep; 7(9):1391-404. PubMed ID: 8885234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endocytosis and intracellular sorting of ricin and Shiga toxin.
    Sandvig K; van Deurs B
    FEBS Lett; 1994 Jun; 346(1):99-102. PubMed ID: 8206167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrograde transport of protein toxins through the Golgi apparatus.
    Sandvig K; Skotland T; van Deurs B; Klokk TI
    Histochem Cell Biol; 2013 Sep; 140(3):317-26. PubMed ID: 23765164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endocytosis and intracellular transport of the glycolipid-binding ligand Shiga toxin in polarized MDCK cells.
    Sandvig K; Prydz K; Ryd M; van Deurs B
    J Cell Biol; 1991 May; 113(3):553-62. PubMed ID: 1901867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shiga toxins.
    Bergan J; Dyve Lingelem AB; Simm R; Skotland T; Sandvig K
    Toxicon; 2012 Nov; 60(6):1085-107. PubMed ID: 22960449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.