These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16410774)

  • 1. Production of saccharogenic and dextrinogenic amylases by Rhizomucor pusillus A 13.36.
    Silva TM; Attili-Angeli D; Carvalho AF; Da Silva R; Boscolo M; Gomes E
    J Microbiol; 2005 Dec; 43(6):561-8. PubMed ID: 16410774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning of a novel thermostable glucoamylase from thermophilic fungus Rhizomucor pusillus and high-level co-expression with α-amylase in Pichia pastoris.
    He Z; Zhang L; Mao Y; Gu J; Pan Q; Zhou S; Gao B; Wei D
    BMC Biotechnol; 2014 Dec; 14():114. PubMed ID: 25539598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of a special thermophilic multifunctional amylase OPMA-N and its N-terminal domain.
    Li F; Zhu X; Li Y; Cao H; Zhang Y
    Acta Biochim Biophys Sin (Shanghai); 2011 Apr; 43(4):324-34. PubMed ID: 21355000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A thermostable maltose-tolerant alpha-amylase from Aspergillus tamarii.
    Moreira FG; Lenartovicz V; Peralta RM
    J Basic Microbiol; 2004; 44(1):29-35. PubMed ID: 14768025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on a thermostable alpha-amylase from the thermophilic fungus Scytalidium thermophilum.
    Aquino AC; Jorge JA; Terenzi HF; Polizeli ML
    Appl Microbiol Biotechnol; 2003 May; 61(4):323-8. PubMed ID: 12743761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Some properties of free and immobilized alpha-amylase from Penicillium griseofulvum by solid state fermentation.
    Ertan F; Yagar H; Balkan B
    Prep Biochem Biotechnol; 2006; 36(1):81-91. PubMed ID: 16428140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of surfactant and detergent-stable, halophilic, and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Strain TSCVKK.
    Kiran KK; Chandra TS
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1023-31. PubMed ID: 17999060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amylase production by Saccharomycopsis fibuligera A11 in solid-state fermentation for hydrolysis of Cassava starch.
    Chen L; Chi ZM; Chi Z; Li M
    Appl Biochem Biotechnol; 2010 Sep; 162(1):252-63. PubMed ID: 19701612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel high maltose-forming α-amylase from Rhizomucor miehei and its application in the food industry.
    Wang YC; Hu HF; Ma JW; Yan QJ; Liu HJ; Jiang ZQ
    Food Chem; 2020 Feb; 305():125447. PubMed ID: 31499289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High maltose-forming, Ca2+-independent and acid stable α-amylase from a novel acidophilic bacterium, Bacillus acidicola.
    Sharma A; Satyanarayana T
    Biotechnol Lett; 2010 Oct; 32(10):1503-7. PubMed ID: 20559683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1.
    Chen SD; Sheu DS; Chen WM; Lo YC; Huang TI; Lin CY; Chang JS
    Biotechnol Prog; 2007; 23(6):1312-20. PubMed ID: 17924646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial characterization of a novel amylase activity isolated from Tunisian Ficus carica latex.
    Aref HL; Mosbah H; Louati H; Said K; Selmi B
    Pharm Biol; 2011 Nov; 49(11):1158-66. PubMed ID: 22014263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a thermostable alpha-amylase from a thermophilic Streptomyces megasporus strain SD12.
    Dey S; Agarwal SO
    Indian J Biochem Biophys; 1999 Jun; 36(3):150-7. PubMed ID: 10650713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of novel raw-starch-digesting and cold-adapted alpha-amylases from Eisenia foetida.
    Ueda M; Asano T; Nakazawa M; Miyatake K; Inouye K
    Comp Biochem Physiol B Biochem Mol Biol; 2008 May; 150(1):125-30. PubMed ID: 18375163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of different carbon sources on the production of amylase by Bacillus sp. MD 124.
    Jana M; Chattopadhyay DJ; Pati BR
    Acta Microbiol Immunol Hung; 1998; 45(2):229-37. PubMed ID: 9768291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A specific short dextrin-hydrolyzing extracellular glucosidase from the thermophilic fungus Thermoascus aurantiacus 179-5.
    Carvalho AF; Gonçalves AZ; da Silva R; Gomes E
    J Microbiol; 2006 Jun; 44(3):276-83. PubMed ID: 16820757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and starch degradation profile of maltotriose-producing amylases from Streptomyces species.
    Kashiwagi N; Miyake M; Hirose S; Sota M; Ogino C; Kondo A
    Biotechnol Lett; 2014 Nov; 36(11):2311-7. PubMed ID: 25048235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of maltotriose production by hydrolyzing of soluble starch with α-amylase from Microbulbifer thermotolerans DAU221.
    Lee YS; Park DJ; Choi YL
    Appl Microbiol Biotechnol; 2015 May; 99(9):3901-11. PubMed ID: 25381490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolysis of soluble starch using Bacillus licheniformis alpha-amylase immobilized on superporous CELBEADS.
    Shewale SD; Pandit AB
    Carbohydr Res; 2007 Jun; 342(8):997-1008. PubMed ID: 17368436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly thermostable and alkaline amylase from a Bacillus sp. PN5.
    Saxena RK; Dutt K; Agarwal L; Nayyar P
    Bioresour Technol; 2007 Jan; 98(2):260-5. PubMed ID: 16524725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.