BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16411073)

  • 21. Self-assembly of Pseudomonas fluorescens lipase into bimolecular aggregates dramatically affects functional properties.
    Fernández-Lorente G; Palomo JM; Fuentes M; Mateo C; Guisán JM; Fernández-Lafuente R
    Biotechnol Bioeng; 2003 Apr; 82(2):232-7. PubMed ID: 12584765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel enantioselective epoxide hydrolase for (R)-phenyl glycidyl ether to generate (R)-3-phenoxy-1,2-propanediol.
    Wu S; Shen J; Zhou X; Chen J
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1281-7. PubMed ID: 17710393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of culture conditions on cathepsin B inhibitor production by a marine bacterium, Pseudomonas sp. strain PB01.
    Hoang le TV; Kim MM; Kim SK
    J Microbiol Biotechnol; 2008 Jun; 18(6):1115-20. PubMed ID: 18600056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase.
    Goswami D; Sen R; Basu JK; De S
    Bioresour Technol; 2010 Jan; 101(1):6-13. PubMed ID: 19717301
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Screening and immobilization Burkholderia sp. GXU56 lipase for enantioselective resolution of (R,S)-methyl mandelate.
    Wei HN; Wu B
    Appl Biochem Biotechnol; 2008 Apr; 149(1):79-88. PubMed ID: 18350389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological regulation and optimization of lipase activity in Pseudomonas aeruginosa EF2.
    Gilbert EJ; Drozd JW; Jones CW
    J Gen Microbiol; 1991 Sep; 137(9):2215-21. PubMed ID: 1748874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New finding and optimal production of a novel extracellular alkaline lipase from Yarrowia lipolytica NRRL Y-2178.
    Lee GH; Bae JH; Suh MJ; Kim IH; Hou CT; Kim HR
    J Microbiol Biotechnol; 2007 Jun; 17(6):1054-7. PubMed ID: 18050928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Optimization of enzymatic resolution technique of glycidyl butyrate via response surface methodology].
    Qian J; Zhou W; Kuang C
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):1062-7. PubMed ID: 18807993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Media preparation using tuna-processing wastes for improved lipase production by shrimp gut isolate Staphylococcus epidermidis CMST Pi 2.
    Esakkiraj P; Austin Jeba Dhas G; Palavesam A; Immanuel G
    Appl Biochem Biotechnol; 2010 Feb; 160(4):1254-65. PubMed ID: 19430738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Vitreoscilla hemoglobin on production of a chemotherapeutic enzyme, L-asparaginase, by Pseudomonas aeruginosa.
    Geckil H; Gencer S; Ates B; Ozer U; Uckun M; Yilmaz I
    Biotechnol J; 2006 Feb; 1(2):203-8. PubMed ID: 16892249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site.
    Wu JY; Yeh KL; Lu WB; Lin CL; Chang JS
    Bioresour Technol; 2008 Mar; 99(5):1157-64. PubMed ID: 17434729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Study on submerged culture conditions of lipase inhibitor producing strain].
    Zhong W; Miao J
    Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):514-8. PubMed ID: 16276929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.
    Nakagawa Y; Hasegawa A; Hiratake J; Sakata K
    Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of 7, 10-dihydroxy-8(E)-octadecenoic acid from triolein via lipase induction by Pseudomonas aeruginosa PR3.
    Chang IA; Kim IH; Kang SC; Hou CT; Kim HR
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):301-6. PubMed ID: 17082930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2.
    Amoozegar MA; Salehghamari E; Khajeh K; Kabiri M; Naddaf S
    J Basic Microbiol; 2008 Jun; 48(3):160-7. PubMed ID: 18506896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057).
    Kiran GS; Shanmughapriya S; Jayalakshmi J; Selvin J; Gandhimathi R; Sivaramakrishnan S; Arunkumar M; Thangavelu T; Natarajaseenivasan K
    Bioprocess Biosyst Eng; 2008 Aug; 31(5):483-92. PubMed ID: 18175153
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production, optimization, and partial purification of lipase from Pseudomonas sp. strain BUP6, a novel rumen bacterium characterized from Malabari goat.
    Priji P; Unni KN; Sajith S; Binod P; Benjamin S
    Biotechnol Appl Biochem; 2015; 62(1):71-8. PubMed ID: 24773509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure-function analysis of a new bacterial lipase: effect of local structure reorganization on lipase activity.
    Shirazi NH; Ranjbar B; Khajeh K; Moghadam TT
    Int J Biol Macromol; 2013 Mar; 54():180-5. PubMed ID: 23262387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. S5 Lipase: an organic solvent tolerant enzyme.
    Rahman RN; Baharum SN; Salleh AB; Basri M
    J Microbiol; 2006 Dec; 44(6):583-90. PubMed ID: 17205035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A practical procedure for the large-scale preparation of methyl (2R,3S)-3-(4-methoxyphenyl)glycidate, a key intermediate for diltiazem.
    Furutani T; Imashiro R; Hatsuda M; Seki M
    J Org Chem; 2002 Jun; 67(13):4599-601. PubMed ID: 12076164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.