BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 1641124)

  • 1. Various types of inhibitory postsynaptic potentials in anterior thalamic cells are differentially altered by stimulation of laterodorsal tegmental cholinergic nucleus.
    Curró Dossi R; Paré D; Steriade M
    Neuroscience; 1992; 47(2):279-89. PubMed ID: 1641124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three types of inhibitory postsynaptic potentials generated by interneurons in the anterior thalamic complex of cat.
    Paré D; Dossi RC; Steriade M
    J Neurophysiol; 1991 Oct; 66(4):1190-204. PubMed ID: 1662261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolonged enhancement of anterior thalamic synaptic responsiveness by stimulation of a brain-stem cholinergic group.
    Paré D; Steriade M; Deschênes M; Bouhassira D
    J Neurosci; 1990 Jan; 10(1):20-33. PubMed ID: 2299393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei.
    Curró Dossi R; Paré D; Steriade M
    J Neurophysiol; 1991 Mar; 65(3):393-406. PubMed ID: 2051187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression.
    Steriade M; Dossi RC; Nuñez A
    J Neurosci; 1991 Oct; 11(10):3200-17. PubMed ID: 1941080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical stimulation of the cholinergic laterodorsal tegmental nucleus elicits scopolamine-sensitive excitatory postsynaptic potentials in medial pontine reticular formation neurons.
    Imon H; Ito K; Dauphin L; McCarley RW
    Neuroscience; 1996 Sep; 74(2):393-401. PubMed ID: 8865191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems.
    Steriade M; Datta S; Paré D; Oakson G; Curró Dossi RC
    J Neurosci; 1990 Aug; 10(8):2541-59. PubMed ID: 2388079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic and non-cholinergic projections from the upper brainstem core to the visual thalamus in the cat.
    Smith Y; Paré D; Deschênes M; Parent A; Steriade M
    Exp Brain Res; 1988; 70(1):166-80. PubMed ID: 2841149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological characteristics of anterior thalamic nuclei, a group devoid of inputs from reticular thalamic nucleus.
    Paré D; Steriade M; Deschênes M; Oakson G
    J Neurophysiol; 1987 Jun; 57(6):1669-85. PubMed ID: 3037038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebellar-responsive neurons in the thalamic ventroanterior-ventrolateral complex of rats: in vivo electrophysiology.
    Sawyer SF; Young SJ; Groves PM; Tepper JM
    Neuroscience; 1994 Dec; 63(3):711-24. PubMed ID: 7898672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noradrenaline excites non-cholinergic laterodorsal tegmental neurons via two distinct mechanisms.
    Kohlmeier KA; Reiner PB
    Neuroscience; 1999; 93(2):619-30. PubMed ID: 10465446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitory postsynaptic potentials in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus.
    von Krosigk M; Monckton JE; Reiner PB; McCormick DA
    Neuroscience; 1999; 91(1):7-20. PubMed ID: 10336055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory postsynaptic potentials evoked in thalamic neurons by stimulation of the reticularis nucleus evoke slow spikes in isolated rat brain slices--I.
    Thomson AM
    Neuroscience; 1988 May; 25(2):491-502. PubMed ID: 3399055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative contributions of thalamic reticular nucleus neurons and intrinsic interneurons to inhibition of thalamic neurons projecting to the motor cortex.
    Ando N; Izawa Y; Shinoda Y
    J Neurophysiol; 1995 Jun; 73(6):2470-85. PubMed ID: 7666153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells.
    Steriade M; Amzica F; Nuñez A
    J Neurophysiol; 1993 Oct; 70(4):1385-400. PubMed ID: 8283204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular mechanisms underlying intrathalamic augmenting responses of reticular and relay neurons.
    Timofeev I; Steriade M
    J Neurophysiol; 1998 May; 79(5):2716-29. PubMed ID: 9582240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro.
    Kao CQ; Coulter DA
    J Neurophysiol; 1997 May; 77(5):2661-76. PubMed ID: 9163382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells.
    Destexhe A; Contreras D; Steriade M
    J Neurophysiol; 1998 Feb; 79(2):999-1016. PubMed ID: 9463458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges.
    Deschênes M; Paradis M; Roy JP; Steriade M
    J Neurophysiol; 1984 Jun; 51(6):1196-219. PubMed ID: 6737028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single cholinergic mesopontine tegmental neurons project to both the pontine reticular formation and the thalamus in the rat.
    Semba K; Reiner PB; Fibiger HC
    Neuroscience; 1990; 38(3):643-54. PubMed ID: 2176719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.