BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 16411247)

  • 1. Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain.
    Ren T; Anderson A; Shen WB; Huang H; Plachez C; Zhang J; Mori S; Kinsman SL; Richards LJ
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Feb; 288(2):191-204. PubMed ID: 16411247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways.
    Silver J; Lorenz SE; Wahlsten D; Coughlin J
    J Comp Neurol; 1982 Sep; 210(1):10-29. PubMed ID: 7130467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human.
    Richards LJ; Plachez C; Ren T
    Clin Genet; 2004 Oct; 66(4):276-89. PubMed ID: 15355427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple Slits regulate the development of midline glial populations and the corpus callosum.
    Unni DK; Piper M; Moldrich RX; Gobius I; Liu S; Fothergill T; Donahoo AL; Baisden JM; Cooper HM; Richards LJ
    Dev Biol; 2012 May; 365(1):36-49. PubMed ID: 22349628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular and molecular tunnels surrounding the forebrain commissures of human fetuses.
    Lent R; Uziel D; Baudrimont M; Fallet C
    J Comp Neurol; 2005 Mar; 483(4):375-82. PubMed ID: 15700272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient cellular structures in developing corpus callosum of the human brain.
    Jovanov-Milosević N; Benjak V; Kostović I
    Coll Antropol; 2006 Jun; 30(2):375-81. PubMed ID: 16848154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain.
    Andrews W; Liapi A; Plachez C; Camurri L; Zhang J; Mori S; Murakami F; Parnavelas JG; Sundaresan V; Richards LJ
    Development; 2006 Jun; 133(11):2243-52. PubMed ID: 16690755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey.
    Lamantia AS; Rakic P
    J Comp Neurol; 1990 Jan; 291(4):520-37. PubMed ID: 2329189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Agenesis of the corpus callosum. Neuropathologic study and physiopathologic hypotheses].
    Gelot A; Lewin F; Moraine C; Pompidou A
    Neurochirurgie; 1998 May; 44(1 Suppl):74-84. PubMed ID: 9757326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunocytochemical demonstration of early appearing astroglial structures that form boundaries and pathways along axon tracts in the fetal brain.
    Silver J; Edwards MA; Levitt P
    J Comp Neurol; 1993 Feb; 328(3):415-36. PubMed ID: 8440789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The axon guidance defect of the telencephalic commissures of the JSAP1-deficient brain was partially rescued by the transgenic expression of JIP1.
    Ha HY; Cho IH; Lee KW; Lee KW; Song JY; Kim KS; Yu YM; Lee JK; Song JS; Yang SD; Shin HS; Han PL
    Dev Biol; 2005 Jan; 277(1):184-99. PubMed ID: 15572149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging and histological studies of corpus callosal and hippocampal abnormalities linked to doublecortin deficiency.
    Kappeler C; Dhenain M; Phan Dinh Tuy F; Saillour Y; Marty S; Fallet-Bianco C; Souville I; Souil E; Pinard JM; Meyer G; Encha-Razavi F; Volk A; Beldjord C; Chelly J; Francis F
    J Comp Neurol; 2007 Jan; 500(2):239-54. PubMed ID: 17111359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice.
    Shu T; Butz KG; Plachez C; Gronostajski RM; Richards LJ
    J Neurosci; 2003 Jan; 23(1):203-12. PubMed ID: 12514217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EphB2 and EphA4 receptors regulate formation of the principal inter-hemispheric tracts of the mammalian forebrain.
    Ho SK; Kovacević N; Henkelman RM; Boyd A; Pawson T; Henderson JT
    Neuroscience; 2009 Jun; 160(4):784-95. PubMed ID: 19289155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PlexinA1 is crucial for the midline crossing of callosal axons during corpus callosum development in BALB/cAJ mice.
    Hossain MM; Tsuzuki T; Sakakibara K; Imaizumi F; Ikegaya A; Inagaki M; Takahashi I; Ito T; Takamatsu H; Kumanogoh A; Negishi T; Yukawa K
    PLoS One; 2019; 14(8):e0221440. PubMed ID: 31430342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prenatal formation of the normal mouse corpus callosum: a quantitative study with carbocyanine dyes.
    Ozaki HS; Wahlsten D
    J Comp Neurol; 1992 Sep; 323(1):81-90. PubMed ID: 1430316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defects of the fetal forebrain in mice with hereditary agenesis of the corpus callosum.
    Wahlsten D
    J Comp Neurol; 1987 Aug; 262(2):227-41. PubMed ID: 3624553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Appropriate Bmp7 levels are required for the differentiation of midline guidepost cells involved in corpus callosum formation.
    Sánchez-Camacho C; Ortega JA; Ocaña I; Alcántara S; Bovolenta P
    Dev Neurobiol; 2011 May; 71(5):337-50. PubMed ID: 21485009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Commissure formation in the mammalian forebrain.
    Lindwall C; Fothergill T; Richards LJ
    Curr Opin Neurobiol; 2007 Feb; 17(1):3-14. PubMed ID: 17275286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology, molecular phenotypes and distribution of neurons in developing human corpus callosum.
    Jovanov-Milošević N; Petanjek Z; Petrović D; Judaš M; Kostović I
    Eur J Neurosci; 2010 Nov; 32(9):1423-32. PubMed ID: 20846339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.