These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 16411248)

  • 1. Whisker maps in marsupials: nerve lesions and critical periods.
    Waite PM; Gorrie CA; Herath NP; Marotte LR
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Feb; 288(2):174-81. PubMed ID: 16411248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-DG uptake patterns related to single vibrissae during exploratory behaviors in the hamster trigeminal system.
    Jacquin MF; McCasland JS; Henderson TA; Rhoades RW; Woolsey TA
    J Comp Neurol; 1993 Jun; 332(1):38-58. PubMed ID: 8390494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cortical and thalamic lesions upon primary afferent terminations, distributions of projection neurons, and the cytochrome oxidase pattern in the trigeminal brainstem complex.
    Chiaia NL; Bennett-Clarke CA; Rhoades RW
    J Comp Neurol; 1991 Jan; 303(4):600-16. PubMed ID: 1849519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of neonatal whisker lesions on mouse central trigeminal pathways.
    Durham D; Woolsey TA
    J Comp Neurol; 1984 Mar; 223(3):424-47. PubMed ID: 6707253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental onset of functional activity in the wallaby whisker cortex in response to stimulation of the infraorbital nerve.
    Mark RF; Flett DL; Marotte LR; Waite PM
    Somatosens Mot Res; 2002; 19(3):198-206. PubMed ID: 12396576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of structural and functional connectivity in the thalamocortical somatosensory pathway in the wallaby.
    Leamey CA; Flett DL; Ho SM; Marotte LR
    Eur J Neurosci; 2007 May; 25(10):3058-70. PubMed ID: 17561819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Timecourse of development of the wallaby trigeminal pathway: III. Thalamocortical and corticothalamic projections.
    Marotte LR; Leamey CA; Waite PM
    J Comp Neurol; 1997 Oct; 387(2):194-214. PubMed ID: 9336223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reassemblage of primary cell aggregates and modulation of subcortical connections in the thalamic relay nucleus: effects of vibrissal damage in the developing whisker-to-barrel pathway in the mouse.
    Yamakado M
    J Comp Neurol; 1999 Jan; 403(4):517-33. PubMed ID: 9888316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of thalamocortical response transformations in the rat whisker-barrel system.
    Shoykhet M; Simons DJ
    J Neurophysiol; 2008 Jan; 99(1):356-66. PubMed ID: 17989240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instructive role of a peripheral pattern for the central patterning of the trigeminal projection at the brainstem and thalamus revealed by an artificially altered whisker pattern.
    Ohsaki K; Nakamura S
    Neuroscience; 2006 Sep; 141(4):1899-908. PubMed ID: 16808999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of metabotropic glutamate receptors from trigeminal nuclei to barrel cortex in postnatal mouse.
    Muñoz A; Liu XB; Jones EG
    J Comp Neurol; 1999 Jul; 409(4):549-66. PubMed ID: 10376739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevention of galanin upregulation following neonatal infraorbital nerve transection or attenuation of axoplasmic transport does not rescue central vibrissae-related patterns in the rat.
    Chiaia NL; Shah A; Crissman RS; Rhoades RW
    Eur J Neurosci; 2001 Jan; 13(1):25-34. PubMed ID: 11135001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timecourse of development of the wallaby trigeminal pathway. II. Brainstem to thalamus and the emergence of cellular aggregations.
    Leamey CA; Marotte LR; Waite PM
    J Comp Neurol; 1996 Jan; 364(3):494-514. PubMed ID: 8820879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous functional organization of barrel cortex in GAP-43 deficient mice.
    Dubroff JG; Stevens RT; Hitt J; Hodge CJ; McCasland JS
    Neuroimage; 2006 Feb; 29(4):1040-8. PubMed ID: 16309923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurogenesis and identification of developing layers in the visual cortex of the wallaby (Macropus eugenii).
    Marotte LR; Sheng X
    J Comp Neurol; 2000 Jan; 416(2):131-42. PubMed ID: 10581461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map.
    Oury F; Murakami Y; Renaud JS; Pasqualetti M; Charnay P; Ren SY; Rijli FM
    Science; 2006 Sep; 313(5792):1408-13. PubMed ID: 16902088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Postnatal development of barreloid neuropils in the ventrobasal complex of mouse thalamus: a histochemical study for cytochrome oxidase].
    Yamakado M
    No To Shinkei; 1985 May; 37(5):497-506. PubMed ID: 2992556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abnormal thalamocortical pathfinding and terminal arbors lead to enlarged barrels in neonatal GAP-43 heterozygous mice.
    McIlvain VA; Robertson DR; Maimone MM; McCasland JS
    J Comp Neurol; 2003 Jul; 462(2):252-64. PubMed ID: 12794747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of functional connections between thalamic fibres and the visual cortex of the wallaby revealed by current source density analysis in vivo.
    Pearce AR; James AC; Mark RF
    J Comp Neurol; 2000 Mar; 418(4):441-56. PubMed ID: 10713572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thalamocortical maturation in mice is influenced by body weight.
    Hoerder-Suabedissen A; Paulsen O; Molnár Z
    J Comp Neurol; 2008 Nov; 511(3):415-20. PubMed ID: 18803242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.