BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 16411758)

  • 1. Evidence for redox cooperativity between c-type hemes of MauG which is likely coupled to oxygen activation during tryptophan tryptophylquinone biosynthesis.
    Li X; Feng M; Wang Y; Tachikawa H; Davidson VL
    Biochemistry; 2006 Jan; 45(3):821-8. PubMed ID: 16411758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis.
    Wang Y; Graichen ME; Liu A; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2003 Jun; 42(24):7318-25. PubMed ID: 12809487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A T67A mutation in the proximal pocket of the high-spin heme of MauG stabilizes formation of a mixed-valent FeII/FeIII state and enhances charge resonance stabilization of the bis-FeIV state.
    Shin S; Feng M; Li C; Williamson HR; Choi M; Wilmot CM; Davidson VL
    Biochim Biophys Acta; 2015 Aug; 1847(8):709-16. PubMed ID: 25896561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further insights into quinone cofactor biogenesis: probing the role of mauG in methylamine dehydrogenase tryptophan tryptophylquinone formation.
    Pearson AR; De La Mora-Rey T; Graichen ME; Wang Y; Jones LH; Marimanikkupam S; Agger SA; Grimsrud PA; Davidson VL; Wilmot CM
    Biochemistry; 2004 May; 43(18):5494-502. PubMed ID: 15122915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic mechanism for the initial steps in MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Lee S; Shin S; Li X; Davidson VL
    Biochemistry; 2009 Mar; 48(11):2442-7. PubMed ID: 19196017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis.
    Shin S; Feng M; Chen Y; Jensen LM; Tachikawa H; Wilmot CM; Liu A; Davidson VL
    Biochemistry; 2011 Jan; 50(1):144-50. PubMed ID: 21128656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carboxyl group of Glu113 is required for stabilization of the diferrous and bis-Fe(IV) states of MauG.
    Abu Tarboush N; Yukl ET; Shin S; Feng M; Wilmot CM; Davidson VL
    Biochemistry; 2013 Sep; 52(37):6358-67. PubMed ID: 23952537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG.
    Feng M; Jensen LM; Yukl ET; Wei X; Liu A; Wilmot CM; Davidson VL
    Biochemistry; 2012 Feb; 51(8):1598-606. PubMed ID: 22299652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Tarboush NA; Jensen LM; Yukl ET; Geng J; Liu A; Wilmot CM; Davidson VL
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):16956-61. PubMed ID: 21969534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan tryptophylquinone biosynthesis: a radical approach to posttranslational modification.
    Davidson VL; Liu A
    Biochim Biophys Acta; 2012 Nov; 1824(11):1299-305. PubMed ID: 22314272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-range electron transfer reactions between hemes of MauG and different forms of tryptophan tryptophylquinone of methylamine dehydrogenase.
    Shin S; Abu Tarboush N; Davidson VL
    Biochemistry; 2010 Jul; 49(27):5810-6. PubMed ID: 20540536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascorbate protects the diheme enzyme, MauG, against self-inflicted oxidative damage by an unusual antioxidant mechanism.
    Ma Z; Davidson VL
    Biochem J; 2017 Jul; 474(15):2563-2572. PubMed ID: 28634178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG.
    Geng J; Dornevil K; Davidson VL; Liu A
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):9639-44. PubMed ID: 23720312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone.
    Davidson VL; Wilmot CM
    Annu Rev Biochem; 2013; 82():531-50. PubMed ID: 23746262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic possibilities in MauG-dependent tryptophan tryptophylquinone biosynthesis.
    Li X; Jones LH; Pearson AR; Wilmot CM; Davidson VL
    Biochemistry; 2006 Nov; 45(44):13276-83. PubMed ID: 17073448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the loss of the axial tyrosine ligand of the low-spin heme of MauG on its physical properties and reactivity.
    Abu Tarboush N; Shin S; Geng J; Liu A; Davidson VL
    FEBS Lett; 2012 Dec; 586(24):4339-43. PubMed ID: 23127557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heme iron nitrosyl complex of MauG reveals an efficient redox equilibrium between hemes with only one heme exclusively binding exogenous ligands.
    Fu R; Liu F; Davidson VL; Liu A
    Biochemistry; 2009 Dec; 48(49):11603-5. PubMed ID: 19911786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MauG-dependent in vitro biosynthesis of tryptophan tryptophylquinone in methylamine dehydrogenase.
    Wang Y; Li X; Jones LH; Pearson AR; Wilmot CM; Davidson VL
    J Am Chem Soc; 2005 Jun; 127(23):8258-9. PubMed ID: 15941239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MauG, a diheme enzyme that catalyzes tryptophan tryptophylquinone biosynthesis by remote catalysis.
    Shin S; Davidson VL
    Arch Biochem Biophys; 2014 Feb; 544():112-8. PubMed ID: 24144526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional importance of tyrosine 294 and the catalytic selectivity for the bis-Fe(IV) state of MauG revealed by replacement of this axial heme ligand with histidine .
    Abu Tarboush N; Jensen LM; Feng M; Tachikawa H; Wilmot CM; Davidson VL
    Biochemistry; 2010 Nov; 49(45):9783-91. PubMed ID: 20929212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.