BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 16411765)

  • 1. DNA polymerase catalysis in the absence of Watson-Crick hydrogen bonds: analysis by single-turnover kinetics.
    Potapova O; Chan C; DeLucia AM; Helquist SA; Kool ET; Grindley ND; Joyce CM
    Biochemistry; 2006 Jan; 45(3):890-8. PubMed ID: 16411765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of hydrogen bonds between Escherichia coli DNA polymerase I (Klenow fragment) and the minor groove of DNA by amino acid substitution of the polymerase and atomic substitution of the DNA.
    Spratt TE
    Biochemistry; 2001 Mar; 40(9):2647-52. PubMed ID: 11258875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for Watson-Crick and not Hoogsteen or wobble base pairing in the selection of nucleotides for insertion opposite pyrimidines and a thymine dimer by yeast DNA pol eta.
    Hwang H; Taylor JS
    Biochemistry; 2005 Mar; 44(12):4850-60. PubMed ID: 15779911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli.
    McCain MD; Meyer AS; Schultz SS; Glekas A; Spratt TE
    Biochemistry; 2005 Apr; 44(15):5647-59. PubMed ID: 15823023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A specific partner for abasic damage in DNA.
    Matray TJ; Kool ET
    Nature; 1999 Jun; 399(6737):704-8. PubMed ID: 10385125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The steric hypothesis for DNA replication and fluorine hydrogen bonding revisited in light of structural data.
    Egli M
    Acc Chem Res; 2012 Aug; 45(8):1237-46. PubMed ID: 22524491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli DNA polymerase I (Klenow fragment) uses a hydrogen-bonding fork from Arg668 to the primer terminus and incoming deoxynucleotide triphosphate to catalyze DNA replication.
    Meyer AS; Blandino M; Spratt TE
    J Biol Chem; 2004 Aug; 279(32):33043-6. PubMed ID: 15210707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient replication between non-hydrogen-bonded nucleoside shape analogs.
    Morales JC; Kool ET
    Nat Struct Biol; 1998 Nov; 5(11):950-4. PubMed ID: 9808038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence of 18-A long hydrogen bond track in the active site of Escherichia coli DNA polymerase I (Klenow fragment). Its requirement in the stabilization of enzyme-template-primer complex.
    Singh K; Modak MJ
    J Biol Chem; 2003 Mar; 278(13):11289-302. PubMed ID: 12522214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of terminal base pair hydrogen-bonding in 3'-end proofreading by the Klenow fragment of DNA polymerase I.
    Morales JC; Kool ET
    Biochemistry; 2000 Mar; 39(10):2626-32. PubMed ID: 10704212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of purine-purine mispairs during misincorporation and extension by Escherichia coli DNA polymerase I.
    Kretulskie AM; Spratt TE
    Biochemistry; 2006 Mar; 45(11):3740-6. PubMed ID: 16533057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of nucleobase shape complementarity and hydrogen bonding in the formation and stability of the closed polymerase-DNA complex.
    Dzantiev L; Alekseyev YO; Morales JC; Kool ET; Romano LJ
    Biochemistry; 2001 Mar; 40(10):3215-21. PubMed ID: 11258938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-fidelity in vivo replication of DNA base shape mimics without Watson-Crick hydrogen bonds.
    Delaney JC; Henderson PT; Helquist SA; Morales JC; Essigmann JM; Kool ET
    Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4469-73. PubMed ID: 12676985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A thymidine triphosphate shape analog lacking Watson-Crick pairing ability is replicated with high sequence selectivity.
    Moran S; Ren RX; Kool ET
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10506-11. PubMed ID: 9380669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorous base-pairing effects in a DNA polymerase active site.
    Lai JS; Kool ET
    Chemistry; 2005 May; 11(10):2966-71. PubMed ID: 15744767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic Incorporation of a Coumarin-Guanine Base Pair.
    Johnson A; Karimi A; Luedtke NW
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):16839-16843. PubMed ID: 31486266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the effect of minor groove interactions and metal cofactors on mutagenic replication by human DNA polymerase β.
    Koag MC; Lee S
    Biochem J; 2018 Feb; 475(3):571-585. PubMed ID: 29301983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base pair hydrogen bonds are essential for proofreading selectivity by the human mitochondrial DNA polymerase.
    Lee HR; Helquist SA; Kool ET; Johnson KA
    J Biol Chem; 2008 May; 283(21):14411-6. PubMed ID: 17650503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Faithful PCR Amplification of an Unnatural Base-Pair Analogue with Four Hydrogen Bonds.
    Tarashima N; Komatsu Y; Furukawa K; Minakawa N
    Chemistry; 2015 Jul; 21(30):10688-95. PubMed ID: 26177045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Varying DNA base-pair size in subangstrom increments: evidence for a loose, not large, active site in low-fidelity Dpo4 polymerase.
    Mizukami S; Kim TW; Helquist SA; Kool ET
    Biochemistry; 2006 Mar; 45(9):2772-8. PubMed ID: 16503632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.