BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 16411815)

  • 1. Wavy-walled bioreactor supports increased cell proliferation and matrix deposition in engineered cartilage constructs.
    Bueno EM; Bilgen B; Barabino GA
    Tissue Eng; 2005; 11(11-12):1699-709. PubMed ID: 16411815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased rate of chondrocyte aggregation in a wavy-walled bioreactor.
    Bueno EM; Bilgen B; Carrier RL; Barabino GA
    Biotechnol Bioeng; 2004 Dec; 88(6):767-77. PubMed ID: 15515164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering.
    Bilgen B; Sucosky P; Neitzel GP; Barabino GA
    Biotechnol Bioeng; 2006 Dec; 95(6):1009-22. PubMed ID: 17031866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentric cylinder bioreactor for production of tissue engineered cartilage: effect of seeding density and hydrodynamic loading on construct development.
    Saini S; Wick TM
    Biotechnol Prog; 2003; 19(2):510-21. PubMed ID: 12675595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue growth modeling in a wavy-walled bioreactor.
    Bilgen B; Uygun K; Bueno EM; Sucosky P; Barabino GA
    Tissue Eng Part A; 2009 Apr; 15(4):761-71. PubMed ID: 18847355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of low oxygen tension on tissue-engineered cartilage construct development in the concentric cylinder bioreactor.
    Saini S; Wick TM
    Tissue Eng; 2004; 10(5-6):825-32. PubMed ID: 15265300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing cell seeding of scaffolds in tissue engineering through manipulation of hydrodynamic parameters.
    Bueno EM; Laevsky G; Barabino GA
    J Biotechnol; 2007 May; 129(3):516-31. PubMed ID: 17324484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type I collagen-based fibrous capsule enhances integration of tissue-engineered cartilage with native articular cartilage.
    Yang YH; Ard MB; Halper JT; Barabino GA
    Ann Biomed Eng; 2014 Apr; 42(4):716-26. PubMed ID: 24362632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage.
    Vunjak-Novakovic G; Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE
    J Orthop Res; 1999 Jan; 17(1):130-8. PubMed ID: 10073657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of bioreactor hydrodynamic environment and its effects on tissue growth.
    Bilgen B; Barabino GA
    Methods Mol Biol; 2012; 868():237-55. PubMed ID: 22692614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential morphology and homogeneity of tissue-engineered cartilage in hydrodynamic cultivation with transient exposure to insulin-like growth factor-1 and transforming growth factor-β1.
    Yang YH; Barabino GA
    Tissue Eng Part A; 2013 Nov; 19(21-22):2349-60. PubMed ID: 23672482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of mixing in a novel wavy-walled bioreactor for tissue engineering.
    Bilgen B; Chang-Mateu IM; Barabino GA
    Biotechnol Bioeng; 2005 Dec; 92(7):907-19. PubMed ID: 16175564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor.
    Sikavitsas VI; Bancroft GN; Mikos AG
    J Biomed Mater Res; 2002 Oct; 62(1):136-48. PubMed ID: 12124795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement for serum in medium supplemented with insulin-transferrin-selenium for hydrodynamic cultivation of engineered cartilage.
    Yang YH; Barabino GA
    Tissue Eng Part A; 2011 Aug; 17(15-16):2025-35. PubMed ID: 21457088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [An in vitro study on three-dimensional cultivation with dynamic compressive stimulation for cartilage tissue engineering].
    Wang Yongcheng ; Meng H; Yuan Xueling ; Peng J; Guo Q; Lu S; Wang A
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Sep; 28(9):1145-9. PubMed ID: 25509782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stirred flow bioreactor modulates chondrocyte growth and extracellular matrix biosynthesis in chitosan scaffolds.
    García Cruz DM; Salmerón-Sánchez M; Gómez-Ribelles JL
    J Biomed Mater Res A; 2012 Sep; 100(9):2330-41. PubMed ID: 22529045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivation of agarose-based microfluidic hydrogel promotes the development of large, full-thickness, tissue-engineered articular cartilage constructs.
    Goldman SM; Barabino GA
    J Tissue Eng Regen Med; 2017 Feb; 11(2):572-581. PubMed ID: 25186302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures.
    Isogai N; Kusuhara H; Ikada Y; Ohtani H; Jacquet R; Hillyer J; Lowder E; Landis WJ
    Tissue Eng; 2006 Apr; 12(4):691-703. PubMed ID: 16674284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioreactor cultivation of three-dimensional cartilage-carrier-constructs.
    Nagel-Heyer S; Goepfert C; Feyerabend F; Petersen JP; Adamietz P; Meenen NM; Pörtner R
    Bioprocess Biosyst Eng; 2005 Jul; 27(4):273-80. PubMed ID: 15928929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage.
    Gemmiti CV; Guldberg RE
    Tissue Eng; 2006 Mar; 12(3):469-79. PubMed ID: 16579680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.