These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 16411896)
61. Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. Yasumoto K; Yokoyama K; Takahashi K; Tomita Y; Shibahara S J Biol Chem; 1997 Jan; 272(1):503-9. PubMed ID: 8995290 [TBL] [Abstract][Full Text] [Related]
62. Establishment of a melanogenesis regulation assay system using a fluorescent protein reporter combined with the promoters for the melanogenesis-related genes in human melanoma cells. Lin CC; Yang CH; Lin YJ; Chiu YW; Chen CY Enzyme Microb Technol; 2015 Jan; 68():1-9. PubMed ID: 25435499 [TBL] [Abstract][Full Text] [Related]
63. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. Bertolotto C; Abbe P; Hemesath TJ; Bille K; Fisher DE; Ortonne JP; Ballotti R J Cell Biol; 1998 Aug; 142(3):827-35. PubMed ID: 9700169 [TBL] [Abstract][Full Text] [Related]
64. Protein kinase C-beta-mediated complex formation between tyrosinase and TRP-1. Wu H; Park HY Biochem Biophys Res Commun; 2003 Nov; 311(4):948-53. PubMed ID: 14623273 [TBL] [Abstract][Full Text] [Related]
65. Dynamic regulation of the human dopachrome tautomerase promoter by MITF, ER-alpha and chromatin remodelers during proliferation and senescence of human melanocytes. Schwahn DJ; Timchenko NA; Shibahara S; Medrano EE Pigment Cell Res; 2005 Jun; 18(3):203-13. PubMed ID: 15892717 [TBL] [Abstract][Full Text] [Related]
66. Regulation of the human tyrosinase gene in retinal pigment epithelium cells: the significance of transcription factor orthodenticle homeobox 2 and its polymorphic binding site. Reinisalo M; Putula J; Mannermaa E; Urtti A; Honkakoski P Mol Vis; 2012; 18():38-54. PubMed ID: 22259223 [TBL] [Abstract][Full Text] [Related]
67. cAMP-binding site of PKA as a molecular target of bisabolangelone against melanocyte-specific hyperpigmented disorder. Roh E; Yun CY; Young Yun J; Park D; Doo Kim N; Yeon Hwang B; Jung SH; Park SK; Kim YB; Han SB; Kim Y J Invest Dermatol; 2013 Apr; 133(4):1072-9. PubMed ID: 23254773 [TBL] [Abstract][Full Text] [Related]
68. A big gene linked to small eyes encodes multiple Mitf isoforms: many promoters make light work. Yasumoto K; Amae S; Udono T; Fuse N; Takeda K; Shibahara S Pigment Cell Res; 1998 Dec; 11(6):329-36. PubMed ID: 9870544 [TBL] [Abstract][Full Text] [Related]
69. The Long Noncoding RNA UCA1 Negatively Regulates Melanogenesis in Melanocytes. Pei S; Chen J; Lu J; Hu S; Jiang L; Lei L; Ouyang Y; Fu C; Ding Y; Li S; Kang L; Huang L; Xiang H; Xiao R; Zeng Q; Huang J J Invest Dermatol; 2020 Jan; 140(1):152-163.e5. PubMed ID: 31276678 [TBL] [Abstract][Full Text] [Related]
70. Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Bertolotto C; Buscà R; Abbe P; Bille K; Aberdam E; Ortonne JP; Ballotti R Mol Cell Biol; 1998 Feb; 18(2):694-702. PubMed ID: 9447965 [TBL] [Abstract][Full Text] [Related]
71. LEF-1 Regulates Tyrosinase Gene Transcription In Vitro. Wang X; Liu Y; Chen H; Mei L; He C; Jiang L; Niu Z; Sun J; Luo H; Li J; Feng Y PLoS One; 2015; 10(11):e0143142. PubMed ID: 26580798 [TBL] [Abstract][Full Text] [Related]
72. Delineating the role of MITF isoforms in pigmentation and tissue homeostasis. Flesher JL; Paterson-Coleman EK; Vasudeva P; Ruiz-Vega R; Marshall M; Pearlman E; MacGregor GR; Neumann J; Ganesan AK Pigment Cell Melanoma Res; 2020 Mar; 33(2):279-292. PubMed ID: 31562697 [TBL] [Abstract][Full Text] [Related]
73. Effects of staurosporine, PMA and A23187 on human melanocyte cultures with dibutyryl cyclic AMP. Maeda K; Tomita Y; Fukuda M; Tagami H Br J Dermatol; 1992 Feb; 126(2):118-24. PubMed ID: 1311191 [TBL] [Abstract][Full Text] [Related]
75. Emodin isolated from Polygoni Multiflori Ramulus inhibits melanogenesis through the liver X receptor-mediated pathway. Kim MO; Park YS; Nho YH; Yun SK; Kim Y; Jung E; Paik JK; Kim M; Cho IH; Lee J Chem Biol Interact; 2016 Apr; 250():78-84. PubMed ID: 26972667 [TBL] [Abstract][Full Text] [Related]
76. Identification of a novel microRNA important for melanogenesis in alpaca (Vicugna pacos). Yang S; Fan R; Shi Z; Ji K; Zhang J; Wang H; Herrid M; Zhang Q; Yao J; Smith GW; Dong C J Anim Sci; 2015 Apr; 93(4):1622-31. PubMed ID: 26020184 [TBL] [Abstract][Full Text] [Related]
77. Leucine-rich glioma inactivated 3 is a melanogenic cytokine in human skin. Jeong HS; Jeong YM; Kim J; Lee SH; Choi HR; Park KC; Kim BJ; Baek KJ; Kwon NS; Yun HY; Kim DS Exp Dermatol; 2014 Aug; 23(8):600-2. PubMed ID: 24903553 [TBL] [Abstract][Full Text] [Related]
78. A role for tyrosinase-related protein 1 in 4-tert-butylphenol-induced toxicity in melanocytes: Implications for vitiligo. Manga P; Sheyn D; Yang F; Sarangarajan R; Boissy RE Am J Pathol; 2006 Nov; 169(5):1652-62. PubMed ID: 17071589 [TBL] [Abstract][Full Text] [Related]
79. UCHL1 Regulates Melanogenesis through Controlling MITF Stability in Human Melanocytes. Seo EY; Jin SP; Sohn KC; Park CH; Lee DH; Chung JH J Invest Dermatol; 2017 Aug; 137(8):1757-1765. PubMed ID: 28392346 [TBL] [Abstract][Full Text] [Related]
80. An extract of Withania somnifera attenuates endothelin-1-stimulated pigmentation in human epidermal equivalents through the interruption of PKC activity within melanocytes. Nakajima H; Wakabayashi Y; Wakamatsu K; Imokawa G Phytother Res; 2011 Sep; 25(9):1398-411. PubMed ID: 21678520 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]