These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16411917)

  • 1. Biotransformation of p-coumaric acid by Paecilomyces variotii.
    Sachan A; Ghosh S; Mitra A
    Lett Appl Microbiol; 2006 Jan; 42(1):35-41. PubMed ID: 16411917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of a new biotransformation pathway of p-coumaric acid into p-hydroxybenzaldehyde in Pycnoporus cinnabarinus.
    Estrada Alvarado I; Lomascolo A; Navarro D; Delattre M; Asther M; Lesage-Meessen L
    Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):725-30. PubMed ID: 11778885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-production of caffeic acid and p-hydroxybenzoic acid from p-coumaric acid by Streptomyces caeruleus MTCC 6638.
    Sachan A; Ghosh S; Sen SK; Mitra A
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):720-7. PubMed ID: 16292647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardization of medium composition and agricultural waste in the production of p-hydroxybenzoic acid by Paecilomyces variotii.
    Jain JR; John JT; Jyotirmoy G; Manohar SH
    3 Biotech; 2015 Oct; 5(5):647-651. PubMed ID: 28324514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of sinapic acid to syringic acid by a filamentous fungus Paecilomyces variotii.
    Mukherjee G; Sachan A; Ghosh S; Mitra A
    J Gen Appl Microbiol; 2006 Apr; 52(2):131-5. PubMed ID: 16778358
    [No Abstract]   [Full Text] [Related]  

  • 6. Degradation of trans-ferulic and p-coumaric acid by Acinetobacter calcoaceticus DSM 586.
    Delneri D; Degrassi G; Rizzo R; Bruschi CV
    Biochim Biophys Acta; 1995 Jun; 1244(2-3):363-7. PubMed ID: 7599157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sonochemical effects on free phenolic acids under ultrasound treatment in a model system.
    Qiao L; Ye X; Sun Y; Ying J; Shen Y; Chen J
    Ultrason Sonochem; 2013 Jul; 20(4):1017-25. PubMed ID: 23339884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus.
    Zhang S; Winestrand S; Guo X; Chen L; Hong F; Jönsson LJ
    Microb Cell Fact; 2014 Apr; 13():62. PubMed ID: 24884902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioconversion of cinnamic acid derivatives by Schizophyllum commune.
    Nimura Y; Tsujiyama S; Ueno M
    J Gen Appl Microbiol; 2010 Oct; 56(5):381-7. PubMed ID: 21099134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of p-coumaric acid and 2,4-dichlorophenoxy acetic acid by Azotobacter sp. strain SSB81.
    Gauri SS; Mandal SM; Dey S; Pati BR
    Bioresour Technol; 2012 Dec; 126():350-3. PubMed ID: 23127838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products.
    Adeboye PT; Bettiga M; Aldaeus F; Larsson PT; Olsson L
    Microb Cell Fact; 2015 Sep; 14():149. PubMed ID: 26392265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of p-hydroxybenzoic acid from p-coumaric acid by Burkholderia glumae BGR1.
    Jung DH; Kim EJ; Jung E; Kazlauskas RJ; Choi KY; Kim BG
    Biotechnol Bioeng; 2016 Jul; 113(7):1493-503. PubMed ID: 26693833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria.
    Sánchez-Maldonado AF; Schieber A; Gänzle MG
    J Appl Microbiol; 2011 Nov; 111(5):1176-84. PubMed ID: 21895894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637.
    Ghosh S; Sachan A; Sen SK; Mitra A
    J Ind Microbiol Biotechnol; 2007 Feb; 34(2):131-8. PubMed ID: 17043806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii.
    Sutherland JB; Crawford DL; Pometto AL
    Can J Microbiol; 1983 Oct; 29(10):1253-7. PubMed ID: 6661696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant regeneration and biochemical accumulation of hydroxybenzoic and hydroxycinnamic acid derivatives in Hypoxis hemerocallidea organ and callus cultures.
    Moyo M; Amoo SO; Aremu AO; Gruz J; Subrtová M; Doležal K; Van Staden J
    Plant Sci; 2014 Oct; 227():157-64. PubMed ID: 25219317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wine phenolic compounds influence the production of volatile phenols by wine-related lactic acid bacteria.
    Silva I; Campos FM; Hogg T; Couto JA
    J Appl Microbiol; 2011 Aug; 111(2):360-70. PubMed ID: 21575111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of Halomonas sp. strain IMPC, a p-coumaric acid-metabolizing bacterium that decarboxylates other cinnamic acids under hypersaline conditions.
    Abdelkafi S; Labat M; Casalot L; Chamkha M; Sayadi S
    FEMS Microbiol Lett; 2006 Feb; 255(1):108-14. PubMed ID: 16436069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.
    Chen H; Virk MS; Chen F
    Int J Food Sci Nutr; 2016 Jun; 67(4):400-11. PubMed ID: 27102241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing.
    Zerva A; Savvides AL; Katsifas EA; Karagouni AD; Hatzinikolaou DG
    Bioresour Technol; 2014 Jun; 162():294-9. PubMed ID: 24759646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.