BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16411922)

  • 1. Secretion of human epidermal growth factor by Corynebacterium glutamicum.
    Date M; Itaya H; Matsui H; Kikuchi Y
    Lett Appl Microbiol; 2006 Jan; 42(1):66-70. PubMed ID: 16411922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum.
    Kikuchi Y; Itaya H; Date M; Matsui K; Wu LF
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):67-74. PubMed ID: 18064454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomyces cinnamoneus transglutaminase.
    Date M; Yokoyama K; Umezawa Y; Matsui H; Kikuchi Y
    J Biotechnol; 2004 Jun; 110(3):219-26. PubMed ID: 15163512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of PHB accumulation on L-glutamate production by recombinant Corynebacterium glutamicum.
    Liu Q; Ouyang SP; Kim J; Chen GQ
    J Biotechnol; 2007 Nov; 132(3):273-9. PubMed ID: 17555841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum.
    Suzuki N; Watanabe K; Okibe N; Tsuchida Y; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2009 Mar; 82(3):491-500. PubMed ID: 19066885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tools for genetic manipulations in Corynebacterium glutamicum and their applications.
    Nešvera J; Pátek M
    Appl Microbiol Biotechnol; 2011 Jun; 90(5):1641-54. PubMed ID: 21519933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis alpha-amylase using cspB promoter and signal sequence.
    Tateno T; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):533-41. PubMed ID: 17891388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production.
    Seibold G; Auchter M; Berens S; Kalinowski J; Eikmanns BJ
    J Biotechnol; 2006 Jul; 124(2):381-91. PubMed ID: 16488498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of the ftsZ gene from Corynebacterium glutamicum (Brevibacterium lactofermentum) in Escherichia coli.
    Honrubia-Marcos MP; Ramos A; Gil JA
    Can J Microbiol; 2005 Jan; 51(1):85-9. PubMed ID: 15782238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum.
    Xu D; Tan Y; Shi F; Wang X
    Plasmid; 2010 Sep; 64(2):85-91. PubMed ID: 20580910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial production of L -glutamate and L -glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb.
    Liu Q; Zhang J; Wei XX; Ouyang SP; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1297-304. PubMed ID: 18040683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autoinduction of a genetic locus encoding putative acyltransferase in Corynebacterium glutamicum.
    Shin HS; Kim YJ; Yoo IH; Lee HS; Jin S; Ha UH
    Biotechnol Lett; 2011 Jan; 33(1):97-102. PubMed ID: 20821248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High yield secretion of heterologous proteins in Corynebacterium glutamicum using its own Tat-type signal sequence.
    Teramoto H; Watanabe K; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2011 Aug; 91(3):677-87. PubMed ID: 21523478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of D-lactic acid by Corynebacterium glutamicum under oxygen deprivation.
    Okino S; Suda M; Fujikura K; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2008 Mar; 78(3):449-54. PubMed ID: 18188553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor.
    Nishimura T; Vertès AA; Shinoda Y; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):889-97. PubMed ID: 17347820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a novel twin-arginine translocation (Tat)-dependent type expression vector for secretory production of heterologous proteins in Corynebacterium glutamicum.
    Zhang L; Jia H; Xu D
    Plasmid; 2015 Nov; 82():50-5. PubMed ID: 26499464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of SigB inactivation on Corynebacterium glutamicum protein secretion.
    Watanabe K; Teramoto H; Suzuki N; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4917-26. PubMed ID: 23179627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and application of an efficient multiple-gene-deletion system in Corynebacterium glutamicum.
    Hu J; Tan Y; Li Y; Hu X; Xu D; Wang X
    Plasmid; 2013 Nov; 70(3):303-13. PubMed ID: 23856168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase.
    Larisch C; Nakunst D; Hüser AT; Tauch A; Kalinowski J
    BMC Genomics; 2007 Jan; 8():4. PubMed ID: 17204139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Corynebacterium glutamicum systems biology.
    Wendisch VF; Bott M; Kalinowski J; Oldiges M; Wiechert W
    J Biotechnol; 2006 Jun; 124(1):74-92. PubMed ID: 16406159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.