BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16412014)

  • 1. Novel therapeutic strategies targeting growth factor signalling cascades in multiple myeloma.
    Yasui H; Hideshima T; Richardson PG; Anderson KC
    Br J Haematol; 2006 Feb; 132(4):385-97. PubMed ID: 16412014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytokines and signal transduction.
    Hideshima T; Podar K; Chauhan D; Anderson KC
    Best Pract Res Clin Haematol; 2005; 18(4):509-24. PubMed ID: 16026734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of novel therapeutic approaches for multiple myeloma.
    Hideshima T; Anderson KC
    Nat Rev Cancer; 2002 Dec; 2(12):927-37. PubMed ID: 12459731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the vascular endothelial growth factor pathway in the treatment of multiple myeloma.
    Podar K; Richardson PG; Chauhan D; Anderson KC
    Expert Rev Anticancer Ther; 2007 Apr; 7(4):551-66. PubMed ID: 17428175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment.
    Hayashi T; Hideshima T; Nguyen AN; Munoz O; Podar K; Hamasaki M; Ishitsuka K; Yasui H; Richardson P; Chakravarty S; Murphy A; Chauhan D; Higgins LS; Anderson KC
    Clin Cancer Res; 2004 Nov; 10(22):7540-6. PubMed ID: 15569984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo.
    Hideshima T; Neri P; Tassone P; Yasui H; Ishitsuka K; Raje N; Chauhan D; Podar K; Mitsiades C; Dang L; Munshi N; Richardson P; Schenkein D; Anderson KC
    Clin Cancer Res; 2006 Oct; 12(19):5887-94. PubMed ID: 17020997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting multiple myeloma cells and their bone marrow microenvironment.
    Pagnucco G; Cardinale G; Gervasi F
    Ann N Y Acad Sci; 2004 Dec; 1028():390-9. PubMed ID: 15650264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted therapy of multiple myeloma based upon tumor-microenvironmental interactions.
    Anderson KC
    Exp Hematol; 2007 Apr; 35(4 Suppl 1):155-62. PubMed ID: 17379101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and validation of novel therapeutic targets for multiple myeloma.
    Hideshima T; Chauhan D; Richardson P; Anderson KC
    J Clin Oncol; 2005 Sep; 23(26):6345-50. PubMed ID: 16155018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The insulin-like growth factor-I receptor inhibitor NVP-AEW541 provokes cell cycle arrest and apoptosis in multiple myeloma cells.
    Maiso P; Ocio EM; Garayoa M; Montero JC; Hofmann F; García-Echeverría C; Zimmermann J; Pandiella A; San Miguel JF
    Br J Haematol; 2008 May; 141(4):470-82. PubMed ID: 18341634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signalling and survival pathways in multiple myeloma.
    Bommert K; Bargou RC; Stühmer T
    Eur J Cancer; 2006 Jul; 42(11):1574-80. PubMed ID: 16797970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the insulin-like growth factor 1 receptor axis in multiple myeloma.
    Menu E; van Valckenborgh E; van Camp B; Vanderkerken K
    Arch Physiol Biochem; 2009 May; 115(2):49-57. PubMed ID: 19234898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment.
    Tai YT; Li XF; Breitkreutz I; Song W; Neri P; Catley L; Podar K; Hideshima T; Chauhan D; Raje N; Schlossman R; Richardson P; Munshi NC; Anderson KC
    Cancer Res; 2006 Jul; 66(13):6675-82. PubMed ID: 16818641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a new age in the treatment of multiple myeloma.
    Piazza FA; Gurrieri C; Trentin L; Semenzato G
    Ann Hematol; 2007 Mar; 86(3):159-72. PubMed ID: 17205287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interference with nuclear factor kappa B and c-Jun NH2-terminal kinase signaling by TRAF6C small interfering RNA inhibits myeloma cell proliferation and enhances apoptosis.
    Chen H; Li M; Campbell RA; Burkhardt K; Zhu D; Li SG; Lee HJ; Wang C; Zeng Z; Gordon MS; Bonavida B; Berenson JR
    Oncogene; 2006 Oct; 25(49):6520-7. PubMed ID: 16702955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimyeloma effects of a sesquiterpene lactone parthenolide.
    Suvannasankha A; Crean CD; Shanmugam R; Farag SS; Abonour R; Boswell HS; Nakshatri H
    Clin Cancer Res; 2008 Mar; 14(6):1814-22. PubMed ID: 18347184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of apoptosis in human multiple myeloma by insulin-like growth factor I (IGF-I).
    Jernberg-Wiklund H; Nilsson K
    Adv Cancer Res; 2007; 97():139-65. PubMed ID: 17419944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in the biology of multiple myeloma: therapeutic applications.
    Anderson K
    Semin Oncol; 1999 Oct; 26(5 Suppl 13):10-22. PubMed ID: 10528890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The malignant clone and the bone-marrow environment.
    Podar K; Richardson PG; Hideshima T; Chauhan D; Anderson KC
    Best Pract Res Clin Haematol; 2007 Dec; 20(4):597-612. PubMed ID: 18070708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of INTERLEUKIN-6 in the pathogenesis of multiple myeloma.
    Gadó K; Domján G; Hegyesi H; Falus A
    Cell Biol Int; 2000; 24(4):195-209. PubMed ID: 10816321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.