BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16412594)

  • 1. Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery.
    Bakhbakhi Y; Charpentier PA; Rohani S
    Int J Pharm; 2006 Feb; 309(1-2):71-80. PubMed ID: 16412594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability and aerodynamic behaviour of glucocorticoid particles prepared by a supercritical fluids process.
    Velaga SP; Bergh S; Carlfors J
    Eur J Pharm Sci; 2004 Mar; 21(4):501-9. PubMed ID: 14998581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of cromolyn sodium microparticles for aerosol delivery by supercritical assisted atomization.
    Reverchon E; Adami R; Caputo G
    AAPS PharmSciTech; 2007 Dec; 8(4):E114. PubMed ID: 18181535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing an environmentally benign process for the production of microparticles: amphiphilic crystallization.
    Murnane D; Marriott C; Martin GP
    Eur J Pharm Biopharm; 2008 May; 69(1):72-82. PubMed ID: 18082385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
    Esfandiari N; Ghoreishi SM
    AAPS PharmSciTech; 2015 Dec; 16(6):1263-9. PubMed ID: 25771736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Int J Pharm; 2008 Jul; 359(1-2):35-45. PubMed ID: 18440736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced dissolution of megestrol acetate microcrystals prepared by antisolvent precipitation process using hydrophilic additives.
    Cho E; Cho W; Cha KH; Park J; Kim MS; Kim JS; Park HJ; Hwang SJ
    Int J Pharm; 2010 Aug; 396(1-2):91-8. PubMed ID: 20558265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process.
    Sui X; Wei W; Yang L; Zu Y; Zhao C; Zhang L; Yang F; Zhang Z
    Int J Pharm; 2012 Feb; 423(2):471-9. PubMed ID: 22183131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of salmeterol xinafoate microparticle production by conventional and novel antisolvent crystallization.
    Murnane D; Marriott C; Martin GP
    Eur J Pharm Biopharm; 2008 May; 69(1):94-105. PubMed ID: 17981448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of indomethacin-saccharin cocrystals using supercritical fluid technology.
    Padrela L; Rodrigues MA; Velaga SP; Matos HA; de Azevedo EG
    Eur J Pharm Sci; 2009 Aug; 38(1):9-17. PubMed ID: 19477273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering drug ultrafine particles of beclomethasone dipropionate for dry powder inhalation.
    Xu LM; Zhang QX; Zhou Y; Zhao H; Wang JX; Chen JF
    Int J Pharm; 2012 Oct; 436(1-2):1-9. PubMed ID: 22732674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent.
    Muhrer G; Mazzotti M
    Biotechnol Prog; 2003; 19(2):549-56. PubMed ID: 12675600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An assessment of beclomethasone dipropionate clathrate formation in a model suspension metered dose inhaler.
    Bouhroum A; Burley JC; Champness NR; Toon RC; Jinks PA; Williams PM; Roberts CJ
    Int J Pharm; 2010 May; 391(1-2):98-106. PubMed ID: 20184946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro dissolution enhancement of micronized l-nimodipine by antisolvent re-crystallization from its crystal form H.
    Zu Y; Li N; Zhao X; Li Y; Ge Y; Wang W; Wang K; Liu Y
    Int J Pharm; 2014 Apr; 464(1-2):1-9. PubMed ID: 24456674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micronization of atorvastatin calcium by antisolvent precipitation process.
    Zhang HX; Wang JX; Zhang ZB; Le Y; Shen ZG; Chen JF
    Int J Pharm; 2009 Jun; 374(1-2):106-13. PubMed ID: 19446766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimisation of powders for pulmonary delivery using supercritical fluid technology.
    Rehman M; Shekunov BY; York P; Lechuga-Ballesteros D; Miller DP; Tan T; Colthorpe P
    Eur J Pharm Sci; 2004 May; 22(1):1-17. PubMed ID: 15113578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Griseofulvin micronization and dissolution rate improvement by supercritical assisted atomization.
    Reverchon E; Della Porta G; Spada A; Antonacci A
    J Pharm Pharmacol; 2004 Nov; 56(11):1379-87. PubMed ID: 15525444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of milling and sieving on functionality of dry powder inhalation products.
    Steckel H; Markefka P; teWierik H; Kammelar R
    Int J Pharm; 2006 Feb; 309(1-2):51-9. PubMed ID: 16377105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the RESS process for producing beclomethasone-17,21-dipropionate particles suitable for pulmonary delivery.
    Charpentier PA; Jia M; Lucky RA
    AAPS PharmSciTech; 2008; 9(1):39-46. PubMed ID: 18446459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.