BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16413052)

  • 1. Osteoinductive porous titanium implants: effect of sodium removal by dilute HCl treatment.
    Takemoto M; Fujibayashi S; Neo M; Suzuki J; Matsushita T; Kokubo T; Nakamura T
    Biomaterials; 2006 May; 27(13):2682-91. PubMed ID: 16413052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vitro and in vivo evaluation of bioactive titanium implants following sodium removal treatment.
    Fawzy AS; Amer MA
    Dent Mater; 2009 Jan; 25(1):48-57. PubMed ID: 18585776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biology of alkali- and heat-treated titanium implants.
    Nishiguchi S; Fujibayashi S; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res A; 2003 Oct; 67(1):26-35. PubMed ID: 14517858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo evaluation of plasma-sprayed titanium coating after alkali modification.
    Xue W; Liu X; Zheng X; Ding C
    Biomaterials; 2005 Jun; 26(16):3029-37. PubMed ID: 15603798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties and osteoconductivity of porous bioactive titanium.
    Takemoto M; Fujibayashi S; Neo M; Suzuki J; Kokubo T; Nakamura T
    Biomaterials; 2005 Oct; 26(30):6014-23. PubMed ID: 15885769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of bioactive Ti-15Zr-4Nb-4Ta alloy from HCl and heat treatments after an NaOH treatment.
    Yamaguchi S; Takadama H; Matsushita T; Nakamura T; Kokubo T
    J Biomed Mater Res A; 2011 May; 97(2):135-44. PubMed ID: 21370443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications.
    Xiong J; Li Y; Wang X; Hodgson P; Wen C
    Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactive porous titanium: an alternative to surgical implants.
    de Medeiros WS; de Oliveira MV; Pereira LC; de Andrade MC
    Artif Organs; 2008 Apr; 32(4):277-82. PubMed ID: 18370941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs.
    Gahlert M; Gudehus T; Eichhorn S; Steinhauser E; Kniha H; Erhardt W
    Clin Oral Implants Res; 2007 Oct; 18(5):662-8. PubMed ID: 17608736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials.
    Amin Yavari S; Ahmadi SM; van der Stok J; Wauthle R; Riemslag AC; Janssen M; Schrooten J; Weinans H; Zadpoor AA
    J Mech Behav Biomed Mater; 2014 Aug; 36():109-19. PubMed ID: 24831611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone ingrowth in porous titanium implants produced by 3D fiber deposition.
    Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K
    Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallic materials stimulating bone formation.
    Kokubo T
    Med J Malaysia; 2004 May; 59 Suppl B():91-2. PubMed ID: 15468833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo.
    Lu X; Leng Y; Zhang X; Xu J; Qin L; Chan CW
    Biomaterials; 2005 May; 26(14):1793-801. PubMed ID: 15576153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of water treatment on the apatite-forming ability of NaOH-treated titanium metal.
    Uchida M; Kim HM; Kokubo T; Fujibayashi S; Nakamura T
    J Biomed Mater Res; 2002; 63(5):522-30. PubMed ID: 12209896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface mechanics of porous titanium implants.
    Clemow AJ; Weinstein AM; Klawitter JJ; Koeneman J; Anderson J
    J Biomed Mater Res; 1981 Jan; 15(1):73-82. PubMed ID: 7348706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of titanate nanobelts used as seeds for the nucleation of hydroxyapatite at the surface of titanium implants.
    Conforto E; Caillard D; Müller L; Müller FA
    Acta Biomater; 2008 Nov; 4(6):1934-43. PubMed ID: 18585110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone formation at recombinant human bone morphogenetic protein-2-coated titanium implants in the posterior mandible (Type II bone) in dogs.
    Wikesjö UM; Xiropaidis AV; Qahash M; Lim WH; Sorensen RG; Rohrer MD; Wozney JM; Hall J
    J Clin Periodontol; 2008 Nov; 35(11):985-91. PubMed ID: 18976395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkali- and heat-treated porous titanium for orthopedic implants.
    Nishiguchi S; Kato H; Neo M; Oka M; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res; 2001 Feb; 54(2):198-208. PubMed ID: 11093179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of heat treatment on the bioactivity of surface-modified titanium in calcium solution.
    Sultana R; Hamada K; Ichikawa T; Asaoka K
    Biomed Mater Eng; 2009; 19(2-3):193-204. PubMed ID: 19581714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Experimental study of prostheses modified by three dimensions porous Ti combined bone morphogenetic proteins].
    Li ZL; Wang Y; Zhang GQ; Zhou M; Xue J
    Zhonghua Wai Ke Za Zhi; 2008 Jan; 46(2):129-31. PubMed ID: 18509973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.