BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

780 related articles for article (PubMed ID: 16413492)

  • 1. A global map of p53 transcription-factor binding sites in the human genome.
    Wei CL; Wu Q; Vega VB; Chiu KP; Ng P; Zhang T; Shahab A; Yong HC; Fu Y; Weng Z; Liu J; Zhao XD; Chew JL; Lee YL; Kuznetsov VA; Sung WK; Miller LD; Lim B; Liu ET; Yu Q; Ng HH; Ruan Y
    Cell; 2006 Jan; 124(1):207-19. PubMed ID: 16413492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of p53 target database via integration of microarray and global p53 DNA-binding site analysis.
    Liu S; Mirza A; Wang L
    Methods Mol Biol; 2004; 281():33-54. PubMed ID: 15220520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences.
    Li W; Meyer CA; Liu XS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i274-82. PubMed ID: 15961467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated map of p53-binding sites and histone modification in the human ENCODE regions.
    Kaneshiro K; Tsutsumi S; Tsuji S; Shirahige K; Aburatani H
    Genomics; 2007 Feb; 89(2):178-88. PubMed ID: 17085012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis and modeling of genome-scale avidity distribution of transcription factor binding sites in chip-pet experiments.
    Kuznetsov VA; Orlov YL; Wei CL; Ruan Y
    Genome Inform; 2007; 19():83-94. PubMed ID: 18546507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression.
    Mirza A; Wu Q; Wang L; McClanahan T; Bishop WR; Gheyas F; Ding W; Hutchins B; Hockenberry T; Kirschmeier P; Greene JR; Liu S
    Oncogene; 2003 Jun; 22(23):3645-54. PubMed ID: 12789273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genomic map of p53 binding sites identifies novel p53 targets involved in an apoptotic network.
    Miled C; Pontoglio M; Garbay S; Yaniv M; Weitzman JB
    Cancer Res; 2005 Jun; 65(12):5096-104. PubMed ID: 15958553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin immunoprecipitation-on-chip reveals stress-dependent p53 occupancy in primary normal cells but not in established cell lines.
    Shaked H; Shiff I; Kott-Gutkowski M; Siegfried Z; Haupt Y; Simon I
    Cancer Res; 2008 Dec; 68(23):9671-7. PubMed ID: 19047144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TF Target Mapper: a BLAST search tool for the identification of Transcription Factor target genes.
    Horsman S; Moorhouse MJ; de Jager VC; van der Spek P; Grosveld F; Strouboulis J; Katsantoni EZ
    BMC Bioinformatics; 2006 Mar; 7():120. PubMed ID: 16524462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding sites for metabolic disease related transcription factors inferred at base pair resolution by chromatin immunoprecipitation and genomic microarrays.
    Rada-Iglesias A; Wallerman O; Koch C; Ameur A; Enroth S; Clelland G; Wester K; Wilcox S; Dovey OM; Ellis PD; Wraight VL; James K; Andrews R; Langford C; Dhami P; Carter N; Vetrie D; Pontén F; Komorowski J; Dunham I; Wadelius C
    Hum Mol Genet; 2005 Nov; 14(22):3435-47. PubMed ID: 16221759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChIP-Seq using high-throughput DNA sequencing for genome-wide identification of transcription factor binding sites.
    Lefrançois P; Zheng W; Snyder M
    Methods Enzymol; 2010; 470():77-104. PubMed ID: 20946807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serial analysis of binding elements for human transcription factors.
    Chen J
    Nat Protoc; 2006; 1(3):1481-93. PubMed ID: 17406439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genome analysis identifies the vitamin D receptor gene as a direct target of p53-mediated transcriptional activation.
    Maruyama R; Aoki F; Toyota M; Sasaki Y; Akashi H; Mita H; Suzuki H; Akino K; Ohe-Toyota M; Maruyama Y; Tatsumi H; Imai K; Shinomura Y; Tokino T
    Cancer Res; 2006 May; 66(9):4574-83. PubMed ID: 16651407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment.
    Kim J; Bhinge AA; Morgan XC; Iyer VR
    Nat Methods; 2005 Jan; 2(1):47-53. PubMed ID: 15782160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serial analysis of binding elements for transcription factors.
    Chen J
    Methods Mol Biol; 2009; 567():113-32. PubMed ID: 19588089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ChIP sequencing to identify p53 targets.
    Vaughan C; Windle B; Deb S
    Methods Mol Biol; 2013; 962():227-36. PubMed ID: 23150451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. p53-dependent change in replication timing of the human genome.
    Watanabe Y; Shibata K; Sugimura H; Maekawa M
    Biochem Biophys Res Commun; 2007 Dec; 364(2):289-93. PubMed ID: 17949684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Identification of two new p53 target genes through implementation of the modified chromatin immunoprecipitation method and inverse PCR].
    Burgess R; Luniak V; Noskin L; Giliano N
    Mol Biol (Mosk); 2002; 36(6):1035-43. PubMed ID: 12500542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple testing methods for ChIP-Chip high density oligonucleotide array data.
    Keleş S; van der Laan MJ; Dudoit S; Cawley SE
    J Comput Biol; 2006 Apr; 13(3):579-613. PubMed ID: 16706714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin immunoprecipitation for identifying transcription factor targets in keratinocytes.
    Ortt K; Sinha S
    Methods Mol Biol; 2010; 585():159-70. PubMed ID: 19908003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.