These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Lu Y; Abraham WR; Conrad R Environ Microbiol; 2007 Feb; 9(2):474-81. PubMed ID: 17222145 [TBL] [Abstract][Full Text] [Related]
3. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. Qiu Q; Noll M; Abraham WR; Lu Y; Conrad R ISME J; 2008 Jun; 2(6):602-14. PubMed ID: 18385771 [TBL] [Abstract][Full Text] [Related]
4. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Lu Y; Conrad R Science; 2005 Aug; 309(5737):1088-90. PubMed ID: 16099988 [TBL] [Abstract][Full Text] [Related]
8. Comparison of bacterial rhizosphere communities from plant microbial fuel cells with different current production by 454 amplicon sequencing. Rothballer M; Engel M; Strik DP; Timmers R; Schloter M; Hartmann A Commun Agric Appl Biol Sci; 2011; 76(2):31-2. PubMed ID: 21404929 [No Abstract] [Full Text] [Related]
9. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Lu Y; Rosencrantz D; Liesack W; Conrad R Environ Microbiol; 2006 Aug; 8(8):1351-60. PubMed ID: 16872399 [TBL] [Abstract][Full Text] [Related]
11. Microbial diversity of culturable heterotrophs in the rhizosphere of salt marsh grass, Porteresia coarctata (Tateoka) in a mangrove ecosystem. Bharathkumar S; Paul D; Nair S J Basic Microbiol; 2008 Feb; 48(1):10-5. PubMed ID: 18247389 [TBL] [Abstract][Full Text] [Related]
12. Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids. Shrestha M; Abraham WR; Shrestha PM; Noll M; Conrad R Environ Microbiol; 2008 Feb; 10(2):400-12. PubMed ID: 18177369 [TBL] [Abstract][Full Text] [Related]
13. The use of stable isotope probing techniques in bioreactor and field studies on bioremediation. Madsen EL Curr Opin Biotechnol; 2006 Feb; 17(1):92-7. PubMed ID: 16378724 [TBL] [Abstract][Full Text] [Related]
14. Unlocking the 'microbial black box' using RNA-based stable isotope probing technologies. Whiteley AS; Manefield M; Lueders T Curr Opin Biotechnol; 2006 Feb; 17(1):67-71. PubMed ID: 16337784 [TBL] [Abstract][Full Text] [Related]
15. Stable Isotope Probing of Microbiota Structure and Function in the Plant Rhizosphere. Achouak W; Haichar FEZ Methods Mol Biol; 2019; 2046():233-243. PubMed ID: 31407309 [TBL] [Abstract][Full Text] [Related]
16. Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Bernard L; Mougel C; Maron PA; Nowak V; Lévêque J; Henault C; Haichar FZ; Berge O; Marol C; Balesdent J; Gibiat F; Lemanceau P; Ranjard L Environ Microbiol; 2007 Mar; 9(3):752-64. PubMed ID: 17298374 [TBL] [Abstract][Full Text] [Related]
18. 13CO2 pulse labelling of plants in tandem with stable isotope probing: methodological considerations for examining microbial function in the rhizosphere. Griffiths RI; Manefield M; Ostle N; McNamara N; O'Donnell AG; Bailey MJ; Whiteley AS J Microbiol Methods; 2004 Jul; 58(1):119-29. PubMed ID: 15177910 [TBL] [Abstract][Full Text] [Related]
19. Identification of cellulolytic bacteria in soil by stable isotope probing. Haichar FZ; Achouak W; Christen R; Heulin T; Marol C; Marais MF; Mougel C; Ranjard L; Balesdent J; Berge O Environ Microbiol; 2007 Mar; 9(3):625-34. PubMed ID: 17298363 [TBL] [Abstract][Full Text] [Related]
20. Biological costs and benefits to plant-microbe interactions in the rhizosphere. Morgan JA; Bending GD; White PJ J Exp Bot; 2005 Jul; 56(417):1729-39. PubMed ID: 15911554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]