BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 16413969)

  • 1. Any way you look at it, successful obstacle negotiation needs visually guided on-line foot placement regulation during the approach phase.
    Patla AE; Greig M
    Neurosci Lett; 2006 Apr 10-17; 397(1-2):110-4. PubMed ID: 16413969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes to control of adaptive gait in individuals with long-standing reduced stereoacuity.
    Buckley JG; Panesar GK; MacLellan MJ; Pacey IE; Barrett BT
    Invest Ophthalmol Vis Sci; 2010 May; 51(5):2487-95. PubMed ID: 20335609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory.
    Rhea CK; Rietdyk S
    Neurosci Lett; 2007 May; 418(1):60-5. PubMed ID: 17382468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prism adaptation and generalization during visually guided locomotor tasks.
    Alexander MS; Flodin BW; Marigold DS
    J Neurophysiol; 2011 Aug; 106(2):860-71. PubMed ID: 21613590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion.
    Mohagheghi AA; Moraes R; Patla AE
    Exp Brain Res; 2004 Apr; 155(4):459-68. PubMed ID: 14770275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociations in rod bisection: the effect of viewing conditions on perception and action.
    Hughes LE; Bates TC; Aimola Davies AM
    Cortex; 2008 Oct; 44(9):1279-87. PubMed ID: 18761142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer of motor performance in an obstacle avoidance task to different walking conditions.
    Lam T; Dietz V
    J Neurophysiol; 2004 Oct; 92(4):2010-6. PubMed ID: 15381740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Obstacle crossing during locomotion: visual exproprioceptive information is used in an online mode to update foot placement before the obstacle but not swing trajectory over it.
    Timmis MA; Buckley JG
    Gait Posture; 2012 May; 36(1):160-2. PubMed ID: 22424759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral visual cues affect minimum-foot-clearance during overground locomotion.
    Graci V; Elliott DB; Buckley JG
    Gait Posture; 2009 Oct; 30(3):370-4. PubMed ID: 19628392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of vision in Parkinson's disease locomotion control: free walking task.
    Vitório R; Lirani-Silva E; Barbieri FA; Raile V; Batistela RA; Stella F; Gobbi LT
    Gait Posture; 2012 Feb; 35(2):175-9. PubMed ID: 21962407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rough-terrain problem: accurate foot targeting as a function of visual information regarding target location.
    Rietdyk S; Drifmeyer JE
    J Mot Behav; 2010; 42(1):37-48. PubMed ID: 20018585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utility of peripheral visual cues in planning and controlling adaptive gait.
    Graci V; Elliott DB; Buckley JG
    Optom Vis Sci; 2010 Jan; 87(1):21-7. PubMed ID: 19918210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment.
    Rietdyk S; Rhea CK
    Exp Brain Res; 2006 Feb; 169(2):272-8. PubMed ID: 16421728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keep looking ahead? Re-direction of visual fixation does not always occur during an unpredictable obstacle avoidance task.
    Marigold DS; Weerdesteyn V; Patla AE; Duysens J
    Exp Brain Res; 2007 Jan; 176(1):32-42. PubMed ID: 16819646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related deficits of dual-task walking: the role of foot vision.
    Bock O; Beurskens R
    Gait Posture; 2011 Feb; 33(2):190-4. PubMed ID: 21095129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What visual information is used for navigation around obstacles in a cluttered environment?
    Patla AE; Tomescu SS; Ishac MG
    Can J Physiol Pharmacol; 2004; 82(8-9):682-92. PubMed ID: 15523525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilitation of spinal reflexes assists performing but not learning an obstacle-avoidance locomotor task.
    Michel J; van Hedel HJ; Dietz V
    Eur J Neurosci; 2007 Sep; 26(5):1299-306. PubMed ID: 17767507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lesions of area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually guided locomotion.
    Lajoie K; Drew T
    J Neurophysiol; 2007 Mar; 97(3):2339-54. PubMed ID: 17215501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related differences in stepping performance during step cycle-related removal of vision.
    Chapman GJ; Hollands MA
    Exp Brain Res; 2006 Oct; 174(4):613-21. PubMed ID: 16733708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.