These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16413996)

  • 1. Ultrasonic damages on cyanobacterial photosynthesis.
    Zhang G; Zhang P; Liu H; Wang B
    Ultrason Sonochem; 2006 Sep; 13(6):501-5. PubMed ID: 16413996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic frequency effects on the removal of Microcystis aeruginosa.
    Zhang G; Zhang P; Wang B; Liu H
    Ultrason Sonochem; 2006 Jul; 13(5):446-50. PubMed ID: 16360333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic selectivity on depressing photosynthesis of cyanobacteria and green algae probed by chlorophyll-a fluorescence transient.
    Duan Z; Tan X; Li N
    Water Sci Technol; 2017 Oct; 76(7-8):2085-2094. PubMed ID: 29068338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound-enhanced coagulation for Microcystis aeruginosa removal.
    Zhang G; Zhang P; Fan M
    Ultrason Sonochem; 2009 Mar; 16(3):334-8. PubMed ID: 19083255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of ultrasonic field on microcystins produced by bloom-forming algae.
    Ma B; Chen Y; Hao H; Wu M; Wang B; Lv H; Zhang G
    Colloids Surf B Biointerfaces; 2005 Mar; 41(2-3):197-201. PubMed ID: 15737547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant.
    Ahn CY; Joung SH; Yoon SK; Oh HM
    J Microbiol; 2007 Apr; 45(2):98-104. PubMed ID: 17483793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of the use of sonication to control cyanobacterial blooms.
    Rajasekhar P; Fan L; Nguyen T; Roddick FA
    Water Res; 2012 Sep; 46(14):4319-29. PubMed ID: 22727861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water.
    Izydorczyk K; Tarczynska M; Jurczak T; Mrowczynski J; Zalewski M
    Environ Toxicol; 2005 Aug; 20(4):425-30. PubMed ID: 16007662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of arsenate on microcystin content and leakage of Microcystis strain PCC7806 under various phosphate regimes.
    Gong Y; Song L; Wu X; Xiao B; Fang T; Liu J
    Environ Toxicol; 2009 Feb; 24(1):87-94. PubMed ID: 18442067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica).
    Jang MH; Ha K; Takamura N
    Toxicon; 2007 Apr; 49(5):727-33. PubMed ID: 17207510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of fluorescence fingerprints for the estimation of bloom formation and toxin production of Microcystis aeruginosa.
    Ziegmann M; Abert M; Müller M; Frimmel FH
    Water Res; 2010 Jan; 44(1):195-204. PubMed ID: 19818983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins.
    Schatz D; Keren Y; Vardi A; Sukenik A; Carmeli S; Börner T; Dittmann E; Kaplan A
    Environ Microbiol; 2007 Apr; 9(4):965-70. PubMed ID: 17359268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source.
    McQuaid N; Zamyadi A; Prévost M; Bird DF; Dorner S
    J Environ Monit; 2011 Feb; 13(2):455-63. PubMed ID: 21157617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies.
    Wu X; Joyce EM; Mason TJ
    Water Res; 2012 Jun; 46(9):2851-8. PubMed ID: 22440593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic variability associated with photosynthetic pigment concentration, and photochemical and nonphotochemical quenching, in strains of the cyanobacterium Microcystis aeruginosa.
    Bañares-España E; López-Rodas V; Costas E; Salgado C; Flores-Moya A
    FEMS Microbiol Ecol; 2007 Jun; 60(3):449-55. PubMed ID: 17374127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between Photosynthetic Capacity and Microcystin Production in Toxic
    Wang X; Wang P; Wang C; Qian J; Feng T; Yang Y
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30205471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature and irradiance influences on cadmium and zinc uptake and toxicity in a freshwater cyanobacterium, Microcystis aeruginosa.
    Zeng J; Wang WX
    J Hazard Mater; 2011 Jun; 190(1-3):922-9. PubMed ID: 21536379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel strategy for cyanobacterial bloom control by ultrasonic irradiation.
    Lee TJ; Nakano K; Matsumura M
    Water Sci Technol; 2002; 46(6-7):207-15. PubMed ID: 12380993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of Microcystis aeruginosa isolates (Chroococcales, Cyanobacteria) from East-African water bodies.
    Haande S; Ballot A; Rohrlack T; Fastner J; Wiedner C; Edvardsen B
    Arch Microbiol; 2007 Jul; 188(1):15-25. PubMed ID: 17333126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomonitoring of cyanobacterial blooms in Polish water reservoir and the cytotoxicity and genotoxicity of selected cyanobacterial extracts.
    Palus J; Dziubałtowska E; Stańczyk M; Lewińska D; Mankiewicz-Boczek J; Izydorczyk K; Bonisławska A; Jurczak T; Zalewski M; Wasowicz W
    Int J Occup Med Environ Health; 2007; 20(1):48-65. PubMed ID: 17509970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.