These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
453 related articles for article (PubMed ID: 16414075)
1. Crystal structure of the polyketide cyclase AknH with bound substrate and product analogue: implications for catalytic mechanism and product stereoselectivity. Kallio P; Sultana A; Niemi J; Mäntsälä P; Schneider G J Mol Biol; 2006 Mar; 357(1):210-20. PubMed ID: 16414075 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of SnoaL2 and AclR: two putative hydroxylases in the biosynthesis of aromatic polyketide antibiotics. Beinker P; Lohkamp B; Peltonen T; Niemi J; Mäntsälä P; Schneider G J Mol Biol; 2006 Jun; 359(3):728-40. PubMed ID: 16650858 [TBL] [Abstract][Full Text] [Related]
3. Crystallization and preliminary crystallographic data of SnoaL, a polyketide cyclase in nogalamycin biosynthesis. Sultana A; Kallio P; Jansson A; Niemi J; Mäntsälä P; Schneider G Acta Crystallogr D Biol Crystallogr; 2004 Jun; 60(Pt 6):1118-20. PubMed ID: 15159574 [TBL] [Abstract][Full Text] [Related]
4. Structure of the polyketide cyclase SnoaL reveals a novel mechanism for enzymatic aldol condensation. Sultana A; Kallio P; Jansson A; Wang JS; Niemi J; Mäntsälä P; Schneider G EMBO J; 2004 May; 23(9):1911-21. PubMed ID: 15071504 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of the cofactor-independent monooxygenase SnoaB from Streptomyces nogalater: implications for the reaction mechanism. Grocholski T; Koskiniemi H; Lindqvist Y; Mäntsälä P; Niemi J; Schneider G Biochemistry; 2010 Feb; 49(5):934-44. PubMed ID: 20052967 [TBL] [Abstract][Full Text] [Related]
6. Crystal structure of the Pyrococcus horikoshii isopropylmalate isomerase small subunit provides insight into the dual substrate specificity of the enzyme. Yasutake Y; Yao M; Sakai N; Kirita T; Tanaka I J Mol Biol; 2004 Nov; 344(2):325-33. PubMed ID: 15522288 [TBL] [Abstract][Full Text] [Related]
7. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis. Koskiniemi H; Metsä-Ketelä M; Dobritzsch D; Kallio P; Korhonen H; Mäntsälä P; Schneider G; Niemi J J Mol Biol; 2007 Sep; 372(3):633-48. PubMed ID: 17669423 [TBL] [Abstract][Full Text] [Related]
8. The polyketide cyclase RemF from Streptomyces resistomycificus contains an unusual octahedral zinc binding site. Silvennoinen L; Sandalova T; Schneider G FEBS Lett; 2009 Sep; 583(17):2917-21. PubMed ID: 19665022 [TBL] [Abstract][Full Text] [Related]
9. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily. Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for the substrate specificity of a Bacillus 1,3-1,4-beta-glucanase. Gaiser OJ; Piotukh K; Ponnuswamy MN; Planas A; Borriss R; Heinemann U J Mol Biol; 2006 Apr; 357(4):1211-25. PubMed ID: 16483609 [TBL] [Abstract][Full Text] [Related]
11. Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis. Vévodová J; Graham RM; Raux E; Schubert HL; Roper DI; Brindley AA; Ian Scott A; Roessner CA; Stamford NP; Elizabeth Stroupe M; Getzoff ED; Warren MJ; Wilson KS J Mol Biol; 2004 Nov; 344(2):419-33. PubMed ID: 15522295 [TBL] [Abstract][Full Text] [Related]
12. Insights into cephamycin biosynthesis: the crystal structure of CmcI from Streptomyces clavuligerus. Oster LM; Lester DR; Terwisscha van Scheltinga A; Svenda M; van Lun M; Généreux C; Andersson I J Mol Biol; 2006 Apr; 358(2):546-58. PubMed ID: 16527306 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of ADP and AMPPNP-bound propionate kinase (TdcD) from Salmonella typhimurium: comparison with members of acetate and sugar kinase/heat shock cognate 70/actin superfamily. Simanshu DK; Savithri HS; Murthy MR J Mol Biol; 2005 Sep; 352(4):876-92. PubMed ID: 16139298 [TBL] [Abstract][Full Text] [Related]
14. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101 [TBL] [Abstract][Full Text] [Related]
15. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate. Meyer S; Scrima A; Versées W; Wittinghofer A J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343 [TBL] [Abstract][Full Text] [Related]
16. Structural bases of feed-back control of arginine biosynthesis, revealed by the structures of two hexameric N-acetylglutamate kinases, from Thermotoga maritima and Pseudomonas aeruginosa. Ramón-Maiques S; Fernández-Murga ML; Gil-Ortiz F; Vagin A; Fita I; Rubio V J Mol Biol; 2006 Feb; 356(3):695-713. PubMed ID: 16376937 [TBL] [Abstract][Full Text] [Related]
17. Crystal structures of creatininase reveal the substrate binding site and provide an insight into the catalytic mechanism. Yoshimoto T; Tanaka N; Kanada N; Inoue T; Nakajima Y; Haratake M; Nakamura KT; Xu Y; Ito K J Mol Biol; 2004 Mar; 337(2):399-416. PubMed ID: 15003455 [TBL] [Abstract][Full Text] [Related]
18. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Reid R; Piagentini M; Rodriguez E; Ashley G; Viswanathan N; Carney J; Santi DV; Hutchinson CR; McDaniel R Biochemistry; 2003 Jan; 42(1):72-9. PubMed ID: 12515540 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure and mechanism of tripeptidyl activity of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis. Ito K; Nakajima Y; Xu Y; Yamada N; Onohara Y; Ito T; Matsubara F; Kabashima T; Nakayama K; Yoshimoto T J Mol Biol; 2006 Sep; 362(2):228-40. PubMed ID: 16914159 [TBL] [Abstract][Full Text] [Related]
20. The crystal structure of polyhydroxybutyrate depolymerase from Penicillium funiculosum provides insights into the recognition and degradation of biopolyesters. Hisano T; Kasuya K; Tezuka Y; Ishii N; Kobayashi T; Shiraki M; Oroudjev E; Hansma H; Iwata T; Doi Y; Saito T; Miki K J Mol Biol; 2006 Mar; 356(4):993-1004. PubMed ID: 16405909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]