These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16414303)

  • 1. Effects of bone materials on the screw pull-out strength in human spine.
    Zhang QH; Tan SH; Chou SM
    Med Eng Phys; 2006 Oct; 28(8):795-801. PubMed ID: 16414303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of fixation screw pull-out strength on human spine.
    Zhang QH; Tan SH; Chou SM
    J Biomech; 2004 Apr; 37(4):479-85. PubMed ID: 14996559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of contributions of orthodontic mini-screw design factors based on FE analysis and the Taguchi method.
    Lin CL; Yu JH; Liu HL; Lin CH; Lin YS
    J Biomech; 2010 Aug; 43(11):2174-81. PubMed ID: 20466376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical analysis of pedicle screw placement: a feasibility study.
    Wagnac E; Michardière D; Garo A; Arnoux PJ; Mac-Thiong JM; Aubin CE
    Stud Health Technol Inform; 2010; 158():167-71. PubMed ID: 20543418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of a thin HA coating on the stress/strain distribution in bone around dental implants using three-dimensional finite element analysis.
    Aoki H; Ozeki K; Ohtani Y; Fukui Y; Asaoka T
    Biomed Mater Eng; 2006; 16(3):157-69. PubMed ID: 16518015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    J Spinal Disord Tech; 2008 Apr; 21(2):130-8. PubMed ID: 18391719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical tests and finite element models for bone holding power of tibial locking screws.
    Hou SM; Hsu CC; Wang JL; Chao CK; Lin J
    Clin Biomech (Bristol, Avon); 2004 Aug; 19(7):738-45. PubMed ID: 15288461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the pull-out strength of screws and pegs used to secure tibial components following total knee arthroplasty.
    Finlay JB; Harada I; Bourne RB; Rorabeck CH; Hardie R; Scott MA
    Clin Orthop Relat Res; 1989 Oct; (247):220-31. PubMed ID: 2791391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximal half angle of the screw thread is a critical design variable affecting the pull-out strength of cancellous bone screws.
    Wang Y; Mori R; Ozoe N; Nakai T; Uchio Y
    Clin Biomech (Bristol, Avon); 2009 Nov; 24(9):781-5. PubMed ID: 19699567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses.
    Hsu CC; Chao CK; Wang JL; Hou SM; Tsai YT; Lin J
    J Orthop Res; 2005 Jul; 23(4):788-94. PubMed ID: 16022991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical performance of standard and cannulated 4.0-mm cancellous bone screws.
    Brown GA; McCarthy T; Bourgeault CA; Callahan DJ
    J Orthop Res; 2000 Mar; 18(2):307-12. PubMed ID: 10815833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical comparison of anatomic trajectory pedicle screw versus injectable calcium sulfate graft-augmented pedicle screw for salvage in cadaveric thoracic bone.
    Derincek A; Wu C; Mehbod A; Transfeldt EE
    J Spinal Disord Tech; 2006 Jun; 19(4):286-91. PubMed ID: 16778665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screw pull-out force is dependent on screw orientation in an anterior cervical plate construct.
    DiPaola CP; Jacobson JA; Awad H; Conrad BP; Rechtine GR
    J Spinal Disord Tech; 2007 Jul; 20(5):369-73. PubMed ID: 17607102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancellous bone screw purchase: a comparison of synthetic femurs, human femurs, and finite element analysis.
    Zdero R; Olsen M; Bougherara H; Schemitsch EH
    Proc Inst Mech Eng H; 2008 Nov; 222(8):1175-83. PubMed ID: 19143412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screw design alters the effects of stress relaxation on pullout.
    Inceoğlu S; Kilinçer C; McLain RF
    Biomed Mater Eng; 2008; 18(2):53-60. PubMed ID: 18408256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct.
    Hadjipavlou AG; Nicodemus CL; al-Hamdan FA; Simmons JW; Pope MH
    J Spinal Disord; 1997 Feb; 10(1):12-9. PubMed ID: 9041491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical comparison of pull-out force of unicortical versus bicortical screws in proximal phalanges of the hand: a human cadaveric study.
    Khalid M; Theivendran K; Cheema M; Rajaratnam V; Deshmukh SC
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1136-40. PubMed ID: 18649977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramedullary nails with two lag screws.
    Brown CJ; Wang CJ; Yettram AL; Procter P
    Clin Biomech (Bristol, Avon); 2004 Jun; 19(5):519-25. PubMed ID: 15182988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of parallel and diverging screw angles in the stability of locked plate constructs.
    Wähnert D; Windolf M; Brianza S; Rothstock S; Radtke R; Brighenti V; Schwieger K
    J Bone Joint Surg Br; 2011 Sep; 93(9):1259-64. PubMed ID: 21911539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical screw purchase in synthetic and human femurs.
    Zdero R; Elfallah K; Olsen M; Schemitsch EH
    J Biomech Eng; 2009 Sep; 131(9):094503. PubMed ID: 19725700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.