These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1641474)

  • 21. Protection of Chinese hamster ovary cells from heat killing by treatment with cycloheximide or puromycin: involvement of HSPs?
    Lee YJ; Dewey WC; Li GC
    Radiat Res; 1987 Aug; 111(2):237-53. PubMed ID: 3628714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermotolerant cells possess an enhanced capacity to repair heat-induced alterations to centrosome structure and function.
    Vidair CA; Doxsey SJ; Dewey WC
    J Cell Physiol; 1995 Apr; 163(1):194-203. PubMed ID: 7896896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermotolerance and the heat shock proteins.
    Burdon RH
    Symp Soc Exp Biol; 1987; 41():269-83. PubMed ID: 3332487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of heat shock (stress) protein induction by deuterium oxide and glycerol: additional support for the abnormal protein hypothesis of induction.
    Edington BV; Whelan SA; Hightower LE
    J Cell Physiol; 1989 May; 139(2):219-28. PubMed ID: 2469684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of diamide toxicity in thermotolerant cells by inhibition of protein synthesis.
    Freeman ML; Meredith MJ
    Cancer Res; 1989 Aug; 49(16):4493-8. PubMed ID: 2743338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Responses of Saccharomyces cerevisiae to thermal stress.
    Guyot S; Ferret E; Gervais P
    Biotechnol Bioeng; 2005 Nov; 92(4):403-9. PubMed ID: 16028292
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance.
    Holahan EV; Highfield DP; Holahan PK; Dewey WC
    Radiat Res; 1984 Jan; 97(1):108-31. PubMed ID: 6695037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How do cells respond to their thermal environment?
    Lepock JR
    Int J Hyperthermia; 2005 Dec; 21(8):681-7. PubMed ID: 16338849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quercetin sensitizes cells in a tumour-like low pH environment to hyperthermia.
    Wachsberger PR; Burd R; Bhala A; Bobyock SB; Wahl ML; Owen CS; Rifat SB; Leeper DB
    Int J Hyperthermia; 2003; 19(5):507-19. PubMed ID: 12944166
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences in thermotolerance induced by heat or sodium arsenite: correlation between redistribution of a 26-kDa protein and development of protein synthesis-independent thermotolerance in CHO cells.
    Lee YJ; Kim DH; Hou ZZ; Corry PM
    Radiat Res; 1991 Sep; 127(3):325-34. PubMed ID: 1886989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cycloheximide protection against actinomycin D cytotoxicity.
    Borrelli MJ; Stafford DM; Rausch CM; Ofenstein JP; Cosenza SC; Soprano KJ
    J Cell Physiol; 1992 Dec; 153(3):507-17. PubMed ID: 1280278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal adaptation in CHO cells at 40 degrees C: the influence of growth conditions and the role of heat shock proteins.
    Przybytkowski E; Bates JH; Bates DA; Mackillop WJ
    Radiat Res; 1986 Sep; 107(3):317-31. PubMed ID: 3749466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heat induced protein denaturation in the particulate fraction of HeLa S3 cells: effect of thermotolerance.
    Burgman PW; Konings AW
    J Cell Physiol; 1992 Oct; 153(1):88-94. PubMed ID: 1325981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relationship of increased nuclear protein content induced by hyperthermia to killing of HeLa S3 cells.
    Kampinga HH; Turkel-Uygur N; Roti Roti JL; Konings AW
    Radiat Res; 1989 Mar; 117(3):511-22. PubMed ID: 2928473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat-induced changes in intracellular sodium and membrane potential: lack of a role in cell killing and thermotolerance.
    Amorino GP; Fox MH
    Radiat Res; 1996 Sep; 146(3):283-92. PubMed ID: 8752306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of heat shock proteins (Mr 70,000) on protein and DNA synthesis at elevated temperatures in vitro.
    Mivechi NF; Ogilvie PD
    Cancer Res; 1989 Mar; 49(6):1492-6. PubMed ID: 2466556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low pH suppresses synthesis of heat-shock proteins and thermotolerance.
    Hang H; Fox MH
    Radiat Res; 1994 Oct; 140(1):24-30. PubMed ID: 7938451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of oxidative stress induced by cysteamine upon the induction and development of thermotolerance in Chinese hamster ovary cells.
    Issels RD; Bourier S; Böning B; Li GC; Mak JJ; Wilmanns W
    Cancer Res; 1987 May; 47(9):2268-74. PubMed ID: 3567920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals: role of heat shock proteins.
    Kampinga HH; Brunsting JF; Stege GJ; Burgman PW; Konings AW
    Exp Cell Res; 1995 Aug; 219(2):536-46. PubMed ID: 7641806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.