BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 16414956)

  • 1. Structural and dynamic basis of a supercoiling-responsive DNA element.
    Bae SH; Yun SH; Sun D; Lim HM; Choi BS
    Nucleic Acids Res; 2006; 34(1):254-61. PubMed ID: 16414956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-range effects in a supercoiled DNA domain generated by transcription in vitro.
    Wang Z; Dröge P
    J Mol Biol; 1997 Aug; 271(4):499-510. PubMed ID: 9281422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of RNA polymerase modifications on transcription-induced negative supercoiling and associated R-loop formation.
    Broccoli S; Rallu F; Sanscartier P; Cerritelli SM; Crouch RJ; Drolet M
    Mol Microbiol; 2004 Jun; 52(6):1769-79. PubMed ID: 15186424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential relaxation of supercoiled DNA containing a hexadecameric recognition sequence for topoisomerase I.
    Busk H; Thomsen B; Bonven BJ; Kjeldsen E; Nielsen OF; Westergaard O
    Nature; 1987 Jun 18-24; 327(6123):638-40. PubMed ID: 3037376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential control of transcription-induced and overall DNA supercoiling by eukaryotic topoisomerases in vitro.
    Wang Z; Dröge P
    EMBO J; 1996 Feb; 15(3):581-9. PubMed ID: 8599941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural attributes of nucleotide sequences in promoter regions of supercoiling-sensitive genes: how to relate microarray expression data with genomic sequences.
    Kravatskaya GI; Chechetkin VR; Kravatsky YV; Tumanyan VG
    Genomics; 2013 Jan; 101(1):1-11. PubMed ID: 23085385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alignment of recombination sites in Hin-mediated site-specific DNA recombination.
    Moskowitz IP; Heichman KA; Johnson RC
    Genes Dev; 1991 Sep; 5(9):1635-45. PubMed ID: 1885005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling.
    Gowers DM; Halford SE
    EMBO J; 2003 Mar; 22(6):1410-8. PubMed ID: 12628933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of varying the supercoiling of DNA on transcription and its regulation.
    Lim HM; Lewis DE; Lee HJ; Liu M; Adhya S
    Biochemistry; 2003 Sep; 42(36):10718-25. PubMed ID: 12962496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology.
    Drolet M
    Mol Microbiol; 2006 Feb; 59(3):723-30. PubMed ID: 16420346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processive recombination by wild-type gin and an enhancer-independent mutant. Insight into the mechanisms of recombination selectivity and strand exchange.
    Crisona NJ; Kanaar R; Gonzalez TN; Zechiedrich EL; Klippel A; Cozzarelli NR
    J Mol Biol; 1994 Oct; 243(3):437-57. PubMed ID: 7966272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites.
    Jagelská EB; Brázda V; Pecinka P; Palecek E; Fojta M
    Biochem J; 2008 May; 412(1):57-63. PubMed ID: 18271758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercoiling-dependent site-specific binding of HU to naked Mu DNA.
    Kobryn K; Lavoie BD; Chaconas G
    J Mol Biol; 1999 Jun; 289(4):777-84. PubMed ID: 10369760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-control in DNA site-specific recombination mediated by the tyrosine recombinase TnpI.
    Vanhooff V; Galloy C; Agaisse H; Lereclus D; Révet B; Hallet B
    Mol Microbiol; 2006 May; 60(3):617-29. PubMed ID: 16629665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The selective binding of HMG1 to the cruciform DNA structure and the subsequent resumption of transcription.
    Waga S; Shirakawa H; Mizuno S; Yoshida M
    Nucleic Acids Symp Ser; 1990; (22):81-2. PubMed ID: 2101922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein tracking-induced supercoiling of DNA: a tool to regulate DNA transactions in vivo?
    Dröge P
    Bioessays; 1994 Feb; 16(2):91-9. PubMed ID: 8147849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and dynamics study of DNA dodecamer duplexes that contain un-, hemi-, or fully methylated GATC sites.
    Bang J; Bae SH; Park CJ; Lee JH; Choi BS
    J Am Chem Soc; 2008 Dec; 130(52):17688-96. PubMed ID: 19108701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercoiling-induced DNA bending.
    Pavlicek JW; Oussatcheva EA; Sinden RR; Potaman VN; Sankey OF; Lyubchenko YL
    Biochemistry; 2004 Aug; 43(33):10664-8. PubMed ID: 15311927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Varying levels of positive and negative supercoiling differently affect the efficiency with which topoisomerase II catenates and decatenates DNA.
    Roca J
    J Mol Biol; 2001 Jan; 305(3):441-50. PubMed ID: 11152602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local supercoil-stabilized DNA structures.
    Palecek E
    Crit Rev Biochem Mol Biol; 1991; 26(2):151-226. PubMed ID: 1914495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.