These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 16415060)
21. Pressure versus heat-induced unfolding of ribonuclease A: the case of hydrophobic interactions within a chain-folding initiation site. Torrent J; Connelly JP; Coll MG; Ribó M; Lange R; Vilanova M Biochemistry; 1999 Nov; 38(48):15952-61. PubMed ID: 10625462 [TBL] [Abstract][Full Text] [Related]
22. Conformational features and thermal stability of bovine seminal plasma protein PDC-109 oligomers and phosphorylcholine-bound complexes. Gasset M; Saiz JL; Laynez J; Sanz L; Gentzel M; Töpper-Petersen E; Calvete JJ Eur J Biochem; 1997 Dec; 250(3):735-44. PubMed ID: 9461296 [TBL] [Abstract][Full Text] [Related]
23. Aspirin interaction with ribonuclease A. Neault JF; Ragi C; Novetta-Dellen A; Tajmir-Riahi HA Cell Biochem Biophys; 2006; 46(1):27-33. PubMed ID: 16943621 [TBL] [Abstract][Full Text] [Related]
24. Differential scanning calorimetric, circular dichroism, and Fourier transform infrared spectroscopic characterization of the thermal unfolding of xylanase A from Streptomyces lividans. Roberge M; Lewis RN; Shareck F; Morosoli R; Kluepfel D; Dupont C; McElhaney RN Proteins; 2003 Feb; 50(2):341-54. PubMed ID: 12486727 [TBL] [Abstract][Full Text] [Related]
25. Aggregation of anti-streptavidin immunoglobulin gamma-1 involves Fab unfolding and competing growth pathways mediated by pH and salt concentration. Kim N; Remmele RL; Liu D; Razinkov VI; Fernandez EJ; Roberts CJ Biophys Chem; 2013 Feb; 172():26-36. PubMed ID: 23334430 [TBL] [Abstract][Full Text] [Related]
26. Protein thermal aggregation involves distinct regions: sequential events in the heat-induced unfolding and aggregation of hemoglobin. Yan YB; Wang Q; He HW; Zhou HM Biophys J; 2004 Mar; 86(3):1682-90. PubMed ID: 14990496 [TBL] [Abstract][Full Text] [Related]
27. I. Study of protein aggregation due to heat denaturation: A structural approach using circular dichroism spectroscopy, nuclear magnetic resonance, and static light scattering. Tsai AM; van Zanten JH; Betenbaugh MJ Biotechnol Bioeng; 1998 Aug; 59(3):273-80. PubMed ID: 10099337 [TBL] [Abstract][Full Text] [Related]
28. Protein unfolding in drug-RNase complexes. Neault JF; Diamantoglou S; Beauregard M; Nafisi Sh; Tajmir-Riahi HA J Biomol Struct Dyn; 2008 Feb; 25(4):387-94. PubMed ID: 18092833 [TBL] [Abstract][Full Text] [Related]
29. A comparison study on RNase A oligomerization induced by cisplatin, carboplatin and oxaliplatin. Picone D; Donnarumma F; Ferraro G; Gotte G; Fagagnini A; Butera G; Donadelli M; Merlino A J Inorg Biochem; 2017 Aug; 173():105-112. PubMed ID: 28511060 [TBL] [Abstract][Full Text] [Related]
30. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation. Bickel F; Herold EM; Signes A; Romeijn S; Jiskoot W; Kiefer H Eur J Pharm Biopharm; 2016 Oct; 107():310-20. PubMed ID: 27449627 [TBL] [Abstract][Full Text] [Related]
31. 4-Chlorobutanol induces unusual reversible and irreversible thermal unfolding of ribonuclease A: thermodynamic, kinetic, and conformational characterization. Mehta R; Kundu A; Kishore N Int J Biol Macromol; 2004 Apr; 34(1-2):13-20. PubMed ID: 15178004 [TBL] [Abstract][Full Text] [Related]
32. Temperature-induced dissociation of protein aggregates: accessing the denatured state. Meersman F; Heremans K Biochemistry; 2003 Dec; 42(48):14234-41. PubMed ID: 14640691 [TBL] [Abstract][Full Text] [Related]
33. Methods to study protein folding by stopped-flow FT-IR. Fabian H; Naumann D Methods; 2004 Sep; 34(1):28-40. PubMed ID: 15283913 [TBL] [Abstract][Full Text] [Related]
34. Ultrafast thermally induced unfolding of RNase A. Phillips CM; Mizutani Y; Hochstrasser RM Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7292-6. PubMed ID: 7638183 [TBL] [Abstract][Full Text] [Related]
35. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study. Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280 [TBL] [Abstract][Full Text] [Related]
36. Ribonuclease Sa conformational stability studied by NMR-monitored hydrogen exchange. Laurents DV; Scholtz JM; Rico M; Pace CN; Bruix M Biochemistry; 2005 May; 44(21):7644-55. PubMed ID: 15909979 [TBL] [Abstract][Full Text] [Related]
37. Protein stabilisation by compatible solutes: effect of mannosylglycerate on unfolding thermodynamics and activity of ribonuclease A. Faria TQ; Knapp S; Ladenstein R; Maçanita AL; Santos H Chembiochem; 2003 Aug; 4(8):734-41. PubMed ID: 12898624 [TBL] [Abstract][Full Text] [Related]
39. Two-phase unfolding pathway of ribonuclease A during denaturation induced by dithiothreitol. Yan YB; Jiang B; Zhang RQ; Zhou HM Protein Sci; 2001 Feb; 10(2):321-8. PubMed ID: 11266618 [TBL] [Abstract][Full Text] [Related]
40. Thermodynamic stability of ribonuclease A in alkylurea solutions and preferential solvation changes accompanying its thermal denaturation: a calorimetric and spectroscopic study. Poklar N; Petrovcic N; Oblak M; Vesnaver G Protein Sci; 1999 Apr; 8(4):832-40. PubMed ID: 10211829 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]