BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 16415368)

  • 1. Mapping quantitative trait loci in noninbred mosquito crosses.
    Wang S; Huang S; Zheng L; Zhao H
    Genetics; 2006 Apr; 172(4):2293-308. PubMed ID: 16415368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Varying coefficient models for mapping quantitative trait loci using recombinant inbred intercrosses.
    Gong Y; Zou F
    Genetics; 2012 Feb; 190(2):475-86. PubMed ID: 22345613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.).
    Zhang YM; Mao Y; Xie C; Smith H; Luo L; Xu S
    Genetics; 2005 Apr; 169(4):2267-75. PubMed ID: 15716509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Bayesian multiple quantitative trait loci mapping in experimental crosses.
    Yi N; Shriner D
    Heredity (Edinb); 2008 Mar; 100(3):240-52. PubMed ID: 17987056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping quantitative trait loci using the experimental designs of recombinant inbred populations.
    Kao CH
    Genetics; 2006 Nov; 174(3):1373-86. PubMed ID: 17121967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Reshuffling for Advanced Intercross Permutation (GRAIP): simulation and permutation for advanced intercross population analysis.
    Peirce JL; Broman KW; Lu L; Chesler EJ; Zhou G; Airey DC; Birmingham AE; Williams RW
    PLoS One; 2008 Apr; 3(4):e1977. PubMed ID: 18431467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the detection of imprinted quantitative trait loci in line crosses: effect of linkage disequilibrium.
    Sandor C; Georges M
    Genetics; 2008 Oct; 180(2):1167-75. PubMed ID: 18780735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian model selection for genome-wide epistatic quantitative trait loci analysis.
    Yi N; Yandell BS; Churchill GA; Allison DB; Eisen EJ; Pomp D
    Genetics; 2005 Jul; 170(3):1333-44. PubMed ID: 15911579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel targeted learning method for quantitative trait loci mapping.
    Wang H; Zhang Z; Rose S; van der Laan M
    Genetics; 2014 Dec; 198(4):1369-76. PubMed ID: 25258376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple-interval mapping for ordinal traits.
    Li J; Wang S; Zeng ZB
    Genetics; 2006 Jul; 173(3):1649-63. PubMed ID: 16585135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping quantitative trait loci from a single-tail sample of the phenotype distribution including survival data.
    Sillanpää MJ; Hoti F
    Genetics; 2007 Dec; 177(4):2361-77. PubMed ID: 18073434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting major genetic loci controlling phenotypic variability in experimental crosses.
    Rönnegård L; Valdar W
    Genetics; 2011 Jun; 188(2):435-47. PubMed ID: 21467569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modified algorithm for the improvement of composite interval mapping.
    Li H; Ye G; Wang J
    Genetics; 2007 Jan; 175(1):361-74. PubMed ID: 17110476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between markers can be caused by the dominance effect of quantitative trait loci.
    Zhang L; Li H; Li Z; Wang J
    Genetics; 2008 Oct; 180(2):1177-90. PubMed ID: 18780741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling dominance in a flexible intercross analysis.
    Rönnegård L; Besnier F; Carlborg O
    BMC Genet; 2009 Jun; 10():30. PubMed ID: 19558715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model selection approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis.
    Manichaikul A; Moon JY; Sen S; Yandell BS; Broman KW
    Genetics; 2009 Mar; 181(3):1077-86. PubMed ID: 19104078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On locating multiple interacting quantitative trait loci in intercross designs.
    Baierl A; Bogdan M; Frommlet F; Futschik A
    Genetics; 2006 Jul; 173(3):1693-703. PubMed ID: 16624924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large differences in collateral blood vessel abundance among individuals arise from multiple genetic variants.
    Faber JE; Zhang H; Xenakis JG; Bell TA; Hock P; Pardo-Manuel de Villena F; Ferris MT; Rzechorzek W
    J Cereb Blood Flow Metab; 2023 Nov; 43(11):1983-2004. PubMed ID: 37572089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. R/qtlDesign: inbred line cross experimental design.
    Sen S; Satagopan JM; Broman KW; Churchill GA
    Mamm Genome; 2007 Feb; 18(2):87-93. PubMed ID: 17347894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A statistical model for mapping morphological shape.
    Fu G; Berg A; Das K; Li J; Li R; Wu R
    Theor Biol Med Model; 2010 Jul; 7():28. PubMed ID: 20594352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.