BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 16415587)

  • 1. Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli.
    Cozzone AJ; El-Mansi M
    J Mol Microbiol Biotechnol; 2005; 9(3-4):132-46. PubMed ID: 16415587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of flux through the citric acid cycle and the glyoxylate bypass in Escherichia coli.
    Holms WH
    Biochem Soc Symp; 1987; 54():17-31. PubMed ID: 3332993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the bifunctional isocitrate dehydrogenase kinase/phosphatase.
    Zheng J; Jia Z
    Nature; 2010 Jun; 465(7300):961-5. PubMed ID: 20505668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyruvate metabolism and the phosphorylation state of isocitrate dehydrogenase in Escherichia coli.
    el-Mansi EM; Nimmo HG; Holms WH
    J Gen Microbiol; 1986 Mar; 132(3):797-806. PubMed ID: 3525743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate.
    El-Mansi M; Cozzone AJ; Shiloach J; Eikmanns BJ
    Curr Opin Microbiol; 2006 Apr; 9(2):173-9. PubMed ID: 16530464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria.
    Cozzone AJ
    Annu Rev Microbiol; 1998; 52():127-64. PubMed ID: 9891796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the enzymes at the branchpoint between the citric acid cycle and the glyoxylate bypass in Escherichia coli.
    Nimmo HG; Borthwick AC; el-Mansi EM; Holms WH; MacKintosh C; Nimmo GA
    Biochem Soc Symp; 1987; 54():93-101. PubMed ID: 3333001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling.
    Armingol E; Tobar E; Cabrera R
    PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of metabolic interconversion of isocitrate dehydrogenase between the catalytically active and inactive forms in Escherichia coli.
    el-Mansi EM
    FEMS Microbiol Lett; 1998 Sep; 166(2):333-9. PubMed ID: 9770290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic regulation analysis of icd-gene knockout Escherichia coli based on 2D electrophoresis with MALDI-TOF mass spectrometry and enzyme activity measurements.
    Kabir MM; Shimizu K
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):84-96. PubMed ID: 15221231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing Lysine Acetylation of Isocitrate Dehydrogenase in Escherichia coli.
    Venkat S; Chen H; Stahman A; Hudson D; McGuire P; Gan Q; Fan C
    J Mol Biol; 2018 Jun; 430(13):1901-1911. PubMed ID: 29733852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loopβ3αC plays an important role in the structure and function of isocitrate dehydrogenase kinase/phosphatase.
    Yin Y; Li S; Gao Y; Tong L; Zheng J; Jia Z; Jiang G; Wei Q
    FEBS Lett; 2016 Sep; 590(18):3144-54. PubMed ID: 27528271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and over-expression of the glyoxylate bypass operon from Escherichia coli ML308.
    el-Mansi EM; MacKintosh C; Duncan K; Holms WH; Nimmo HG
    Biochem J; 1987 Mar; 242(3):661-5. PubMed ID: 3297049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment.
    LaPorte DC; Thorsness PE; Koshland DE
    J Biol Chem; 1985 Sep; 260(19):10563-8. PubMed ID: 3897222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of acetate in Escherichia coli: structural organization and differential expression of the ace operon.
    Cortay JC; Bleicher F; Duclos B; Cenatiempo Y; Gautier C; Prato JL; Cozzone AJ
    Biochimie; 1989; 71(9-10):1043-9. PubMed ID: 2512996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of the substrate specificity of bifunctional isocitrate dehydrogenase kinase/phosphatase.
    Yates SP; Edwards TE; Bryan CM; Stein AJ; Van Voorhis WC; Myler PJ; Stewart LJ; Zheng J; Jia Z
    Biochemistry; 2011 Sep; 50(38):8103-6. PubMed ID: 21870819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting effects of isocitrate dehydrogenase deletion on fluxes through enzymes of central metabolism in Escherichia coli.
    El-Mansi M
    FEMS Microbiol Lett; 2019 Aug; 366(15):. PubMed ID: 31504493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and mechanistic insights into the bifunctional enzyme isocitrate dehydrogenase kinase/phosphatase AceK.
    Zheng J; Yates SP; Jia Z
    Philos Trans R Soc Lond B Biol Sci; 2012 Sep; 367(1602):2656-68. PubMed ID: 22889914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative inactivation of reduced NADP-generating enzymes in E. coli: iron-dependent inactivation with affinity cleavage of NADP-isocitrate dehydrogenase.
    Murakami K; Tsubouchi R; Fukayama M; Ogawa T; Yoshino M
    Arch Microbiol; 2006 Nov; 186(5):385-92. PubMed ID: 16897033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of a fully active recombinant tobacco cytosolic NADP-dependent isocitrate dehydrogenase in Escherichia coli: evidence for a role for the N-terminal region in enzyme activity.
    Gálvez S; Hodges M; Bismuth E; Samson I; Teller S; Gadal P
    Arch Biochem Biophys; 1995 Oct; 323(1):164-8. PubMed ID: 7487062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.