These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 16415587)
1. Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli. Cozzone AJ; El-Mansi M J Mol Microbiol Biotechnol; 2005; 9(3-4):132-46. PubMed ID: 16415587 [TBL] [Abstract][Full Text] [Related]
2. Control of flux through the citric acid cycle and the glyoxylate bypass in Escherichia coli. Holms WH Biochem Soc Symp; 1987; 54():17-31. PubMed ID: 3332993 [TBL] [Abstract][Full Text] [Related]
3. Structure of the bifunctional isocitrate dehydrogenase kinase/phosphatase. Zheng J; Jia Z Nature; 2010 Jun; 465(7300):961-5. PubMed ID: 20505668 [TBL] [Abstract][Full Text] [Related]
4. Pyruvate metabolism and the phosphorylation state of isocitrate dehydrogenase in Escherichia coli. el-Mansi EM; Nimmo HG; Holms WH J Gen Microbiol; 1986 Mar; 132(3):797-806. PubMed ID: 3525743 [TBL] [Abstract][Full Text] [Related]
5. Control of carbon flux through enzymes of central and intermediary metabolism during growth of Escherichia coli on acetate. El-Mansi M; Cozzone AJ; Shiloach J; Eikmanns BJ Curr Opin Microbiol; 2006 Apr; 9(2):173-9. PubMed ID: 16530464 [TBL] [Abstract][Full Text] [Related]
6. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Cozzone AJ Annu Rev Microbiol; 1998; 52():127-64. PubMed ID: 9891796 [TBL] [Abstract][Full Text] [Related]
7. Regulation of the enzymes at the branchpoint between the citric acid cycle and the glyoxylate bypass in Escherichia coli. Nimmo HG; Borthwick AC; el-Mansi EM; Holms WH; MacKintosh C; Nimmo GA Biochem Soc Symp; 1987; 54():93-101. PubMed ID: 3333001 [TBL] [Abstract][Full Text] [Related]
8. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling. Armingol E; Tobar E; Cabrera R PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222 [TBL] [Abstract][Full Text] [Related]
9. Control of metabolic interconversion of isocitrate dehydrogenase between the catalytically active and inactive forms in Escherichia coli. el-Mansi EM FEMS Microbiol Lett; 1998 Sep; 166(2):333-9. PubMed ID: 9770290 [TBL] [Abstract][Full Text] [Related]
10. Metabolic regulation analysis of icd-gene knockout Escherichia coli based on 2D electrophoresis with MALDI-TOF mass spectrometry and enzyme activity measurements. Kabir MM; Shimizu K Appl Microbiol Biotechnol; 2004 Jul; 65(1):84-96. PubMed ID: 15221231 [TBL] [Abstract][Full Text] [Related]
11. Loopβ3αC plays an important role in the structure and function of isocitrate dehydrogenase kinase/phosphatase. Yin Y; Li S; Gao Y; Tong L; Zheng J; Jia Z; Jiang G; Wei Q FEBS Lett; 2016 Sep; 590(18):3144-54. PubMed ID: 27528271 [TBL] [Abstract][Full Text] [Related]
12. Characterizing Lysine Acetylation of Isocitrate Dehydrogenase in Escherichia coli. Venkat S; Chen H; Stahman A; Hudson D; McGuire P; Gan Q; Fan C J Mol Biol; 2018 Jun; 430(13):1901-1911. PubMed ID: 29733852 [TBL] [Abstract][Full Text] [Related]
13. Molecular cloning and over-expression of the glyoxylate bypass operon from Escherichia coli ML308. el-Mansi EM; MacKintosh C; Duncan K; Holms WH; Nimmo HG Biochem J; 1987 Mar; 242(3):661-5. PubMed ID: 3297049 [TBL] [Abstract][Full Text] [Related]
14. Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment. LaPorte DC; Thorsness PE; Koshland DE J Biol Chem; 1985 Sep; 260(19):10563-8. PubMed ID: 3897222 [TBL] [Abstract][Full Text] [Related]
15. Utilization of acetate in Escherichia coli: structural organization and differential expression of the ace operon. Cortay JC; Bleicher F; Duclos B; Cenatiempo Y; Gautier C; Prato JL; Cozzone AJ Biochimie; 1989; 71(9-10):1043-9. PubMed ID: 2512996 [TBL] [Abstract][Full Text] [Related]
16. Structural basis of the substrate specificity of bifunctional isocitrate dehydrogenase kinase/phosphatase. Yates SP; Edwards TE; Bryan CM; Stein AJ; Van Voorhis WC; Myler PJ; Stewart LJ; Zheng J; Jia Z Biochemistry; 2011 Sep; 50(38):8103-6. PubMed ID: 21870819 [TBL] [Abstract][Full Text] [Related]
17. Contrasting effects of isocitrate dehydrogenase deletion on fluxes through enzymes of central metabolism in Escherichia coli. El-Mansi M FEMS Microbiol Lett; 2019 Aug; 366(15):. PubMed ID: 31504493 [TBL] [Abstract][Full Text] [Related]
18. Structural and mechanistic insights into the bifunctional enzyme isocitrate dehydrogenase kinase/phosphatase AceK. Zheng J; Yates SP; Jia Z Philos Trans R Soc Lond B Biol Sci; 2012 Sep; 367(1602):2656-68. PubMed ID: 22889914 [TBL] [Abstract][Full Text] [Related]
19. Oxidative inactivation of reduced NADP-generating enzymes in E. coli: iron-dependent inactivation with affinity cleavage of NADP-isocitrate dehydrogenase. Murakami K; Tsubouchi R; Fukayama M; Ogawa T; Yoshino M Arch Microbiol; 2006 Nov; 186(5):385-92. PubMed ID: 16897033 [TBL] [Abstract][Full Text] [Related]
20. Purification and characterization of a fully active recombinant tobacco cytosolic NADP-dependent isocitrate dehydrogenase in Escherichia coli: evidence for a role for the N-terminal region in enzyme activity. Gálvez S; Hodges M; Bismuth E; Samson I; Teller S; Gadal P Arch Biochem Biophys; 1995 Oct; 323(1):164-8. PubMed ID: 7487062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]