These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
385 related articles for article (PubMed ID: 16415853)
1. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Westermann S; Wang HW; Avila-Sakar A; Drubin DG; Nogales E; Barnes G Nature; 2006 Mar; 440(7083):565-9. PubMed ID: 16415853 [TBL] [Abstract][Full Text] [Related]
2. Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms. Wang HW; Ramey VH; Westermann S; Leschziner AE; Welburn JP; Nakajima Y; Drubin DG; Barnes G; Nogales E Nat Struct Mol Biol; 2007 Aug; 14(8):721-6. PubMed ID: 17643123 [TBL] [Abstract][Full Text] [Related]
3. Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. Shimogawa MM; Graczyk B; Gardner MK; Francis SE; White EA; Ess M; Molk JN; Ruse C; Niessen S; Yates JR; Muller EG; Bloom K; Odde DJ; Davis TN Curr Biol; 2006 Aug; 16(15):1489-501. PubMed ID: 16890524 [TBL] [Abstract][Full Text] [Related]
4. Live cell imaging of kinetochore capture by microtubules in budding yeast. Tanaka K; Tanaka TU Methods Mol Biol; 2009; 545():233-42. PubMed ID: 19475392 [TBL] [Abstract][Full Text] [Related]
5. Cell division: running rings around the spindle. Nath D Nature; 2006 Mar; 440(7083):434. PubMed ID: 16554798 [No Abstract] [Full Text] [Related]
6. Subunit organization in the Dam1 kinetochore complex and its ring around microtubules. Ramey VH; Wong A; Fang J; Howes S; Barnes G; Nogales E Mol Biol Cell; 2011 Nov; 22(22):4335-42. PubMed ID: 21965284 [TBL] [Abstract][Full Text] [Related]
7. The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Welburn JP; Grishchuk EL; Backer CB; Wilson-Kubalek EM; Yates JR; Cheeseman IM Dev Cell; 2009 Mar; 16(3):374-85. PubMed ID: 19289083 [TBL] [Abstract][Full Text] [Related]
8. The role of centromere-binding factor 3 (CBF3) in spindle stability, cytokinesis, and kinetochore attachment. Bouck D; Bloom K Biochem Cell Biol; 2005 Dec; 83(6):696-702. PubMed ID: 16333320 [TBL] [Abstract][Full Text] [Related]
9. Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Franck AD; Powers AF; Gestaut DR; Gonen T; Davis TN; Asbury CL Nat Cell Biol; 2007 Jul; 9(7):832-7. PubMed ID: 17572669 [TBL] [Abstract][Full Text] [Related]
10. Microtubules: a ring for the depolymerization motor. Salmon ED Curr Biol; 2005 Apr; 15(8):R299-302. PubMed ID: 15854896 [TBL] [Abstract][Full Text] [Related]
11. In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions. Efremov A; Grishchuk EL; McIntosh JR; Ataullakhanov FI Proc Natl Acad Sci U S A; 2007 Nov; 104(48):19017-22. PubMed ID: 18029449 [TBL] [Abstract][Full Text] [Related]
12. Long tethers provide high-force coupling of the Dam1 ring to shortening microtubules. Volkov VA; Zaytsev AV; Gudimchuk N; Grissom PM; Gintsburg AL; Ataullakhanov FI; McIntosh JR; Grishchuk EL Proc Natl Acad Sci U S A; 2013 May; 110(19):7708-13. PubMed ID: 23610433 [TBL] [Abstract][Full Text] [Related]
14. Cdk1 Phosphorylation of the Dam1 Complex Strengthens Kinetochore-Microtubule Attachments. Gutierrez A; Kim JO; Umbreit NT; Asbury CL; Davis TN; Miller MP; Biggins S Curr Biol; 2020 Nov; 30(22):4491-4499.e5. PubMed ID: 32946748 [TBL] [Abstract][Full Text] [Related]
15. The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion. Grishchuk EL; Efremov AK; Volkov VA; Spiridonov IS; Gudimchuk N; Westermann S; Drubin D; Barnes G; McIntosh JR; Ataullakhanov FI Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15423-8. PubMed ID: 18824692 [TBL] [Abstract][Full Text] [Related]
16. Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. Westermann S; Avila-Sakar A; Wang HW; Niederstrasser H; Wong J; Drubin DG; Nogales E; Barnes G Mol Cell; 2005 Jan; 17(2):277-90. PubMed ID: 15664196 [TBL] [Abstract][Full Text] [Related]
17. Electron cryotomography analysis of Dam1C/DASH at the kinetochore-spindle interface in situ. Ng CT; Deng L; Chen C; Lim HH; Shi J; Surana U; Gan L J Cell Biol; 2019 Feb; 218(2):455-473. PubMed ID: 30504246 [TBL] [Abstract][Full Text] [Related]
18. Molecular mechanisms of kinetochore capture by spindle microtubules. Tanaka K; Mukae N; Dewar H; van Breugel M; James EK; Prescott AR; Antony C; Tanaka TU Nature; 2005 Apr; 434(7036):987-94. PubMed ID: 15846338 [TBL] [Abstract][Full Text] [Related]
19. Essential roles for cohesin in kinetochore and spindle function in Xenopus egg extracts. Kenney RD; Heald R J Cell Sci; 2006 Dec; 119(Pt 24):5057-66. PubMed ID: 17158911 [TBL] [Abstract][Full Text] [Related]