BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16415860)

  • 1. Dynamic polymorphism of single actin molecules in the actin filament.
    Kozuka J; Yokota H; Arai Y; Ishii Y; Yanagida T
    Nat Chem Biol; 2006 Feb; 2(2):83-6. PubMed ID: 16415860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic polymorphism of actin as activation mechanism for cell motility.
    Kozuka J; Yokota H; Arai Y; Ishii Y; Yanagida T
    Biosystems; 2007 Apr; 88(3):273-82. PubMed ID: 17184905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic polymorphism of Ras observed by single molecule FRET is the basis for molecular recognition.
    Arai Y; Iwane AH; Wazawa T; Yokota H; Ishii Y; Kataoka T; Yanagida T
    Biochem Biophys Res Commun; 2006 May; 343(3):809-15. PubMed ID: 16564025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of structural dynamics of actin in class-specific myosin motility.
    Noguchi TQ; Morimatsu M; Iwane AH; Yanagida T; Uyeda TQ
    PLoS One; 2015; 10(5):e0126262. PubMed ID: 25945499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The gated gait of the processive molecular motor, myosin V.
    Veigel C; Wang F; Bartoo ML; Sellers JR; Molloy JE
    Nat Cell Biol; 2002 Jan; 4(1):59-65. PubMed ID: 11740494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET analysis of actin-myosin interaction in contracting rat aortic smooth muscle.
    Black J; Dykes A; Thatcher S; Brown D; Bryda EC; Wright GL
    Can J Physiol Pharmacol; 2009 May; 87(5):327-36. PubMed ID: 19448730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion dynamics of motor-driven transport: gradient production and self-organization of surfaces.
    Vikhorev PG; Vikhoreva NN; Sundberg M; Balaz M; Albet-Torres N; Bunk R; Kvennefors A; Liljesson K; Nicholls IA; Nilsson L; Omling P; Tågerud S; Montelius L; Månsson A
    Langmuir; 2008 Dec; 24(23):13509-17. PubMed ID: 18989944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unique mechanism for the processive movement of single-headed myosin-IX.
    Nishikawa M; Nishikawa S; Inoue A; Iwane AH; Yanagida T; Ikebe M
    Biochem Biophys Res Commun; 2006 May; 343(4):1159-64. PubMed ID: 16616011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subdiffraction-resolution fluorescence microscopy of myosin-actin motility.
    Endesfelder U; van de Linde S; Wolter S; Sauer M; Heilemann M
    Chemphyschem; 2010 Mar; 11(4):836-40. PubMed ID: 20186905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural dynamics of actin during active interaction with myosin: different effects of weakly and strongly bound myosin heads.
    Prochniewicz E; Walseth TF; Thomas DD
    Biochemistry; 2004 Aug; 43(33):10642-52. PubMed ID: 15311925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Class VI myosin moves processively along actin filaments backward with large steps.
    Nishikawa S; Homma K; Komori Y; Iwaki M; Wazawa T; Hikikoshi Iwane A; Saito J; Ikebe R; Katayama E; Yanagida T; Ikebe M
    Biochem Biophys Res Commun; 2002 Jan; 290(1):311-7. PubMed ID: 11779171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of the structural transition of muscle thin filaments observed by fluorescence resonance energy transfer.
    Shitaka Y; Kimura C; Iio T; Miki M
    Biochemistry; 2004 Aug; 43(33):10739-47. PubMed ID: 15311935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer between residues on troponin and tropomyosin in the reconstituted thin filament: modeling the troponin-tropomyosin complex.
    Kimura-Sakiyama C; Ueno Y; Wakabayashi K; Miki M
    J Mol Biol; 2008 Feb; 376(1):80-91. PubMed ID: 18155235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin filament uncapping localizes to ruffling lamellae and rocketing vesicles.
    Allen PG
    Nat Cell Biol; 2003 Nov; 5(11):972-9. PubMed ID: 14557819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guidance of actin filament elongation on filament-binding tracks.
    Interliggi KA; Zeile WL; Ciftan-Hens SA; McGuire GE; Purich DL; Dickinson RB
    Langmuir; 2007 Nov; 23(23):11911-6. PubMed ID: 17929952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cofilin binding to muscle and non-muscle actin filaments: isoform-dependent cooperative interactions.
    De La Cruz EM
    J Mol Biol; 2005 Feb; 346(2):557-64. PubMed ID: 15670604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coarse-grained molecular model for actin-myosin simulation.
    Taylor WR; Katsimitsoulia Z
    J Mol Graph Model; 2010 Sep; 29(2):266-79. PubMed ID: 20724184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer between points on actin and the C-terminal region of tropomyosin in skeletal muscle thin filaments.
    Miki M; Hai H; Saeki K; Shitaka Y; Sano K; Maéda Y; Wakabayashi T
    J Biochem; 2004 Jul; 136(1):39-47. PubMed ID: 15269238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Structural changes in actin filaments during binding with phosphofructokinase (F-protein), detected using an optical diffraction method].
    Podlubnaia ZA; Shpagina MD; Freĭdina NA; Udal'tsov SN
    Biofizika; 1996; 41(1):73-7. PubMed ID: 8714461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cofilin increases the torsional flexibility and dynamics of actin filaments.
    Prochniewicz E; Janson N; Thomas DD; De la Cruz EM
    J Mol Biol; 2005 Nov; 353(5):990-1000. PubMed ID: 16213521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.