BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16416654)

  • 1. Significance of targeting polyamine metabolism as an antineoplastic strategy: unique targets for polyamine analogues.
    Casero RA; Frydman B; Stewart TM; Woster PM
    Proc West Pharmacol Soc; 2005; 48():24-30. PubMed ID: 16416654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyamine catabolism in carcinogenesis: potential targets for chemotherapy and chemoprevention.
    Battaglia V; DeStefano Shields C; Murray-Stewart T; Casero RA
    Amino Acids; 2014 Mar; 46(3):511-9. PubMed ID: 23771789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of polyamine catabolism promotes glutamine metabolism and creates a targetable vulnerability in lung cancer.
    Han X; Wang D; Yang L; Wang N; Shen J; Wang J; Zhang L; Chen L; Gao S; Zong WX; Wang Y
    Proc Natl Acad Sci U S A; 2024 Mar; 121(13):e2319429121. PubMed ID: 38513095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications.
    Thomas T; Thomas TJ
    Cell Mol Life Sci; 2001 Feb; 58(2):244-58. PubMed ID: 11289306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyamine Metabolism for Drug Intervention in Trypanosomatids.
    Pérez-Pertejo Y; García-Estrada C; Martínez-Valladares M; Murugesan S; Reguera RM; Balaña-Fouce R
    Pathogens; 2024 Jan; 13(1):. PubMed ID: 38251386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy.
    Xie Y; Murray-Stewart T; Wang Y; Yu F; Li J; Marton LJ; Casero RA; Oupický D
    J Control Release; 2017 Jan; 246():110-119. PubMed ID: 28017891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of polyamine metabolism in remodeling immune responses and blocking therapy within the tumor immune microenvironment.
    Lian J; Liang Y; Zhang H; Lan M; Ye Z; Lin B; Qiu X; Zeng J
    Front Immunol; 2022; 13():912279. PubMed ID: 36119047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamines: the pivotal amines in influencing the tumor microenvironment.
    Holbert CE; Casero RA; Stewart TM
    Discov Oncol; 2024 May; 15(1):173. PubMed ID: 38761252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyamines: their significance for maintaining health and contributing to diseases.
    Xuan M; Gu X; Li J; Huang D; Xue C; He Y
    Cell Commun Signal; 2023 Dec; 21(1):348. PubMed ID: 38049863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyamines in Ovarian Aging and Disease.
    Kang B; Wang X; An X; Ji C; Ling W; Qi Y; Li S; Jiang D
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamines and Cancer.
    Damiani E; Wallace HM
    Methods Mol Biol; 2018; 1694():469-488. PubMed ID: 29080189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases.
    Casero RA; Marton LJ
    Nat Rev Drug Discov; 2007 May; 6(5):373-90. PubMed ID: 17464296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apigenin Inhibits Human SW620 Cell Growth by Targeting Polyamine Catabolism.
    Wang J; Li T; Zang L; Pan X; Wang S; Wu Y; Wang G
    Evid Based Complement Alternat Med; 2017; 2017():3684581. PubMed ID: 28572828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systemic overexpression of antizyme 1 in mouse reduces ornithine decarboxylase activity without major changes in tissue polyamine homeostasis.
    Pietilä M; Dhungana H; Uimari A; Sironen R; Alhonen L
    Transgenic Res; 2014 Feb; 23(1):153-63. PubMed ID: 24174210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current status of the polyamine research field.
    Pegg AE; Casero RA
    Methods Mol Biol; 2011; 720():3-35. PubMed ID: 21318864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamine transport is mediated by both endocytic and solute carrier transport mechanisms in the gastrointestinal tract.
    Uemura T; Stringer DE; Blohm-Mangone KA; Gerner EW
    Am J Physiol Gastrointest Liver Physiol; 2010 Aug; 299(2):G517-22. PubMed ID: 20522643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexes of Thermotoga maritimaS-adenosylmethionine decarboxylase provide insights into substrate specificity.
    Bale S; Baba K; McCloskey DE; Pegg AE; Ealick SE
    Acta Crystallogr D Biol Crystallogr; 2010 Feb; 66(Pt 2):181-9. PubMed ID: 20124698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyamine catabolism and disease.
    Casero RA; Pegg AE
    Biochem J; 2009 Jul; 421(3):323-38. PubMed ID: 19589128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the development of polyamine analogues as antitumor agents.
    Casero RA; Woster PM
    J Med Chem; 2009 Aug; 52(15):4551-73. PubMed ID: 19534534
    [No Abstract]   [Full Text] [Related]  

  • 20. Difluoromethylornithine (DFMO) reduces deficits in isolation-induced ultrasonic vocalizations and balance following neonatal ethanol exposure in rats.
    Rubin MA; Wellmann KA; Lewis B; Overgaauw BJ; Littleton JM; Barron S
    Pharmacol Biochem Behav; 2009 Mar; 92(1):44-50. PubMed ID: 18992275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.