These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16417034)

  • 1. DNA-reactive carcinogens: mode of action and human cancer hazard.
    Preston RJ; Williams GM
    Crit Rev Toxicol; 2005; 35(8-9):673-83. PubMed ID: 16417034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer risk assessment for 1,3-butadiene: data integration opportunities.
    Preston RJ
    Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA reactivity as a mode of action and its relevance to cancer risk assessment.
    Preston RJ
    Toxicol Pathol; 2013 Feb; 41(2):322-5. PubMed ID: 23085981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse-specific carcinogens: an assessment of hazard and significance for validation of short-term carcinogenicity bioassays in transgenic mice.
    Battershill JM; Fielder RJ
    Hum Exp Toxicol; 1998 Apr; 17(4):193-205. PubMed ID: 9617631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are tumor incidence rates from chronic bioassays telling us what we need to know about carcinogens?
    Gaylor DW
    Regul Toxicol Pharmacol; 2005 Mar; 41(2):128-33. PubMed ID: 15698536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental and chemical carcinogenesis.
    Wogan GN; Hecht SS; Felton JS; Conney AH; Loeb LA
    Semin Cancer Biol; 2004 Dec; 14(6):473-86. PubMed ID: 15489140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemiological and experimental applications to occupational cancer prevention.
    Vainio H; Hemminki K
    J UOEH; 1989 Mar; 11 Suppl():323-45. PubMed ID: 2664947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an adverse outcome pathway for chemically induced hepatocellular carcinoma: case study of AFB1, a human carcinogen with a mutagenic mode of action.
    Moore MM; Schoeny RS; Becker RA; White K; Pottenger LH
    Crit Rev Toxicol; 2018 Apr; 48(4):312-337. PubMed ID: 29431554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carcinogenic risk of toluene diisocyanate and 4,4'-methylenediphenyl diisocyanate: epidemiological and experimental evidence.
    Bolognesi C; Baur X; Marczynski B; Norppa H; Sepai O; Sabbioni G
    Crit Rev Toxicol; 2001 Nov; 31(6):737-72. PubMed ID: 11763481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forging the links between metabolism and carcinogenesis.
    Guengerich FP
    Mutat Res; 2001 Jul; 488(3):195-209. PubMed ID: 11397649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically induced renal tubule tumors in the laboratory rat and mouse: review of the NCI/NTP database and categorization of renal carcinogens based on mechanistic information.
    Lock EA; Hard GC
    Crit Rev Toxicol; 2004; 34(3):211-99. PubMed ID: 15239388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of chemical structure on the extent and sites of carcinogenesis for 522 rodent carcinogens and 55 different human carcinogen exposures.
    Ashby J; Paton D
    Mutat Res; 1993 Mar; 286(1):3-74. PubMed ID: 7678908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How well can in vitro data predict in vivo effects of chemicals? Rodent carcinogenicity as a case study.
    Anthony Tony Cox L; Popken DA; Kaplan AM; Plunkett LM; Becker RA
    Regul Toxicol Pharmacol; 2016 Jun; 77():54-64. PubMed ID: 26879462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP.
    Ashby J; Tennant RW
    Mutat Res; 1991 May; 257(3):229-306. PubMed ID: 1707500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular interactions and metabolism of aflatoxin: an update.
    McLean M; Dutton MF
    Pharmacol Ther; 1995 Feb; 65(2):163-92. PubMed ID: 7540767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evaluation of the mode of action framework for mutagenic carcinogens case study: Cyclophosphamide.
    McCarroll N; Keshava N; Cimino M; Chu M; Dearfield K; Keshava C; Kligerman A; Owen R; Protzel A; Putzrath R; Schoeny R
    Environ Mol Mutagen; 2008 Mar; 49(2):117-31. PubMed ID: 18240158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vinyl chloride mechanistic data and risk assessment: DNA reactivity and cross-species quantitative risk extrapolation.
    Whysner J; Conaway CC; Verna L; Williams GM
    Pharmacol Ther; 1996; 71(1-2):7-28. PubMed ID: 8910947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of aflatoxin B
    Tryndyak V; Kindrat I; Dreval K; Churchwell MI; Beland FA; Pogribny IP
    Food Chem Toxicol; 2018 Nov; 121():214-223. PubMed ID: 30157460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhalation carcinogenicity of dichloromethane in rats and mice.
    Aiso S; Take M; Kasai T; Senoh H; Umeda Y; Matsumoto M; Fukushima S
    Inhal Toxicol; 2014 Jul; 26(8):435-51. PubMed ID: 24909451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The comet assay with multiple mouse organs: comparison of comet assay results and carcinogenicity with 208 chemicals selected from the IARC monographs and U.S. NTP Carcinogenicity Database.
    Sasaki YF; Sekihashi K; Izumiyama F; Nishidate E; Saga A; Ishida K; Tsuda S
    Crit Rev Toxicol; 2000 Nov; 30(6):629-799. PubMed ID: 11145306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.