BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 16417256)

  • 1. Intracellular traffic and fate of protein transduction domains HIV-1 TAT peptide and octaarginine. Implications for their utilization as drug delivery vectors.
    Al-Taei S; Penning NA; Simpson JC; Futaki S; Takeuchi T; Nakase I; Jones AT
    Bioconjug Chem; 2006; 17(1):90-100. PubMed ID: 16417256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Na+/H+ exchanger inhibitors on subcellular localisation of endocytic organelles and intracellular dynamics of protein transduction domains HIV-TAT peptide and octaarginine.
    Fretz M; Jin J; Conibere R; Penning NA; Al-Taei S; Storm G; Futaki S; Takeuchi T; Nakase I; Jones AT
    J Control Release; 2006 Nov; 116(2):247-54. PubMed ID: 16971016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. siRNA and pharmacological inhibition of endocytic pathways to characterize the differential role of macropinocytosis and the actin cytoskeleton on cellular uptake of dextran and cationic cell penetrating peptides octaarginine (R8) and HIV-Tat.
    Al Soraj M; He L; Peynshaert K; Cousaert J; Vercauteren D; Braeckmans K; De Smedt SC; Jones AT
    J Control Release; 2012 Jul; 161(1):132-41. PubMed ID: 22465675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gateways and tools for drug delivery: endocytic pathways and the cellular dynamics of cell penetrating peptides.
    Jones AT
    Int J Pharm; 2008 Apr; 354(1-2):34-8. PubMed ID: 18068916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis.
    Fretz MM; Koning GA; Mastrobattista E; Jiskoot W; Storm G
    Biochim Biophys Acta; 2004 Oct; 1665(1-2):48-56. PubMed ID: 15471570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides.
    Duchardt F; Fotin-Mleczek M; Schwarz H; Fischer R; Brock R
    Traffic; 2007 Jul; 8(7):848-66. PubMed ID: 17587406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organelle-targeted delivery of biological macromolecules using the protein transduction domain: potential applications for Peptide aptamer delivery into the nucleus.
    Yoshikawa T; Sugita T; Mukai Y; Yamanada N; Nagano K; Nabeshi H; Yoshioka Y; Nakagawa S; Abe Y; Kamada H; Tsunoda S; Tsutsumi Y
    J Mol Biol; 2008 Jul; 380(5):777-82. PubMed ID: 18571668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular uptake [correction of utake] of the Tat peptide: an endocytosis mechanism following ionic interactions.
    Vives E
    J Mol Recognit; 2003; 16(5):265-71. PubMed ID: 14523939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus.
    Vivès E; Brodin P; Lebleu B
    J Biol Chem; 1997 Jun; 272(25):16010-7. PubMed ID: 9188504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A TAT-streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells.
    Albarran B; To R; Stayton PS
    Protein Eng Des Sel; 2005 Mar; 18(3):147-52. PubMed ID: 15820981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the membrane penetration-enhancing peptide S19 derived from human syncytin-1 for the intracellular delivery of TAT-fused proteins.
    Suzuki M; Iwaki K; Kikuchi M; Fujiwara K; Doi N
    Biochem Biophys Res Commun; 2022 Jan; 586():63-67. PubMed ID: 34826702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat.
    Silhol M; Tyagi M; Giacca M; Lebleu B; Vivès E
    Eur J Biochem; 2002 Jan; 269(2):494-501. PubMed ID: 11856307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane-permeable arginine-rich peptides and the translocation mechanisms.
    Futaki S
    Adv Drug Deliv Rev; 2005 Feb; 57(4):547-58. PubMed ID: 15722163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis.
    Nakase I; Tadokoro A; Kawabata N; Takeuchi T; Katoh H; Hiramoto K; Negishi M; Nomizu M; Sugiura Y; Futaki S
    Biochemistry; 2007 Jan; 46(2):492-501. PubMed ID: 17209559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligoarginine vectors for intracellular delivery: design and cellular-uptake mechanisms.
    Futaki S
    Biopolymers; 2006; 84(3):241-9. PubMed ID: 16333858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoplasmic and nuclear delivery of a TAT-derived peptide and a beta-peptide after endocytic uptake into HeLa cells.
    Potocky TB; Menon AK; Gellman SH
    J Biol Chem; 2003 Dec; 278(50):50188-94. PubMed ID: 14517218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein/peptide transduction domains: potential to deliver large DNA molecules into cells.
    Snyder EL; Dowdy SF
    Curr Opin Mol Ther; 2001 Apr; 3(2):147-52. PubMed ID: 11338927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translocation and nuclear accumulation of monomer and dimer of HIV-1 Tat basic domain in triticale mesophyll protoplasts.
    Chugh A; Eudes F
    Biochim Biophys Acta; 2007 Mar; 1768(3):419-26. PubMed ID: 17214959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of HIV-Tat protein transduction domain.
    Yoon JS; Jung YT; Hong SK; Kim SH; Shin MC; Lee DG; Shin WS; Min WS; Paik SY
    J Microbiol; 2004 Dec; 42(4):328-35. PubMed ID: 15650690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved intracellular delivery of glucocerebrosidase mediated by the HIV-1 TAT protein transduction domain.
    Lee KO; Luu N; Kaneski CR; Schiffmann R; Brady RO; Murray GJ
    Biochem Biophys Res Commun; 2005 Nov; 337(2):701-7. PubMed ID: 16223608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.