These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 16417262)
1. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Nobs L; Buchegger F; Gurny R; Allémann E Bioconjug Chem; 2006; 17(1):139-45. PubMed ID: 16417262 [TBL] [Abstract][Full Text] [Related]
2. Differential tumor cell targeting of anti-HER2 (Herceptin) and anti-CD20 (Mabthera) coupled nanoparticles. Cirstoiu-Hapca A; Bossy-Nobs L; Buchegger F; Gurny R; Delie F Int J Pharm; 2007 Mar; 331(2):190-6. PubMed ID: 17196347 [TBL] [Abstract][Full Text] [Related]
3. Nanomedicines for active targeting: physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells. Cirstoiu-Hapca A; Buchegger F; Bossy L; Kosinski M; Gurny R; Delie F Eur J Pharm Sci; 2009 Oct; 38(3):230-7. PubMed ID: 19632322 [TBL] [Abstract][Full Text] [Related]
4. Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin for active targeting. Nobs L; Buchegger F; Gurny R; Allémann E Eur J Pharm Biopharm; 2004 Nov; 58(3):483-90. PubMed ID: 15451522 [TBL] [Abstract][Full Text] [Related]
5. Active targeting behaviors of biotinylated pluronic/poly(lactic acid) nanoparticles in vitro through three-step biotin-avidin interaction. Xiong XY; Gong YC; Li ZL; Li YP; Guo L J Biomater Sci Polym Ed; 2011; 22(12):1607-19. PubMed ID: 20699057 [TBL] [Abstract][Full Text] [Related]
6. In vitro &in vivo targeting behaviors of biotinylated Pluronic F127/poly(lactic acid) nanoparticles through biotin-avidin interaction. Xiong XY; Guo L; Gong YC; Li ZL; Li YP; Liu ZY; Zhou M Eur J Pharm Sci; 2012 Aug; 46(5):537-44. PubMed ID: 22538053 [TBL] [Abstract][Full Text] [Related]
7. Benefit of anti-HER2-coated paclitaxel-loaded immuno-nanoparticles in the treatment of disseminated ovarian cancer: Therapeutic efficacy and biodistribution in mice. Cirstoiu-Hapca A; Buchegger F; Lange N; Bossy L; Gurny R; Delie F J Control Release; 2010 Jun; 144(3):324-31. PubMed ID: 20219607 [TBL] [Abstract][Full Text] [Related]
8. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Feng SS; Mei L; Anitha P; Gan CW; Zhou W Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012 [TBL] [Abstract][Full Text] [Related]
9. Overcoming the formulation obstacles towards targeted chemotherapy: in vitro and in vivo evaluation of cytotoxic drug loaded immunonanoparticles. Debotton N; Parnes M; Kadouche J; Benita S J Control Release; 2008 May; 127(3):219-30. PubMed ID: 18343522 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional poly(D,L-lactide-co-glycolide)/montmorillonite (PLGA/MMT) nanoparticles decorated by Trastuzumab for targeted chemotherapy of breast cancer. Sun B; Ranganathan B; Feng SS Biomaterials; 2008 Feb; 29(4):475-86. PubMed ID: 17953985 [TBL] [Abstract][Full Text] [Related]
11. Comparative evaluation of novel biodegradable nanoparticles for the drug targeting to breast cancer cells. Mattu C; Pabari RM; Boffito M; Sartori S; Ciardelli G; Ramtoola Z Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):463-72. PubMed ID: 23916461 [TBL] [Abstract][Full Text] [Related]
12. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. Kocbek P; Obermajer N; Cegnar M; Kos J; Kristl J J Control Release; 2007 Jul; 120(1-2):18-26. PubMed ID: 17509712 [TBL] [Abstract][Full Text] [Related]
13. [Biodistribution of (99m)Tc-labeled anti-VEGF mAb 5-FU loaded polylactic acid nanoparticles in human gastric carcinoma xenografts]. Huang KH; Liu JH; Zhu ZH; Li XX; Lu XP; Zhou SY Nan Fang Yi Ke Da Xue Xue Bao; 2007 Aug; 27(8):1137-40. PubMed ID: 17715009 [TBL] [Abstract][Full Text] [Related]
14. Trastuzumab-functionalized nanoparticles of biodegradable copolymers for targeted delivery of docetaxel. Sun B; Feng SS Nanomedicine (Lond); 2009 Jun; 4(4):431-45. PubMed ID: 19505246 [TBL] [Abstract][Full Text] [Related]
15. Targeted cell uptake of a noninternalizing antibody through conjugation to iron oxide nanoparticles in primary central nervous system lymphoma. Wang T; Kievit FM; Veiseh O; Arami H; Stephen ZR; Fang C; Liu Y; Ellenbogen RG; Zhang M World Neurosurg; 2013; 80(1-2):134-41. PubMed ID: 23298674 [TBL] [Abstract][Full Text] [Related]
16. Tumor pretargeting: role of avidin/streptavidin on monoclonal antibody internalization. Casalini P; Luison E; Ménard S; Colnaghi MI; Paganelli G; Canevari S J Nucl Med; 1997 Sep; 38(9):1378-81. PubMed ID: 9293791 [TBL] [Abstract][Full Text] [Related]
17. A novel method for preparing microbubbles targeting hepatocellular carcinoma. Liu F; Wang X; Yang L; Jiang B Hepatogastroenterology; 2009; 56(93):1163-8. PubMed ID: 19760962 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional HER2-antibody conjugated polymeric nanocarrier-based drug delivery system for multi-drug-resistant breast cancer therapy. Vivek R; Thangam R; NipunBabu V; Rejeeth C; Sivasubramanian S; Gunasekaran P; Muthuchelian K; Kannan S ACS Appl Mater Interfaces; 2014 May; 6(9):6469-80. PubMed ID: 24780315 [TBL] [Abstract][Full Text] [Related]
19. In vitro evaluation of avidin antibody pretargeting using 211At-labeled and biotinylated poly-L-lysine as effector molecule. Frost SH; Jensen H; Lindegren S Cancer; 2010 Feb; 116(4 Suppl):1101-10. PubMed ID: 20127953 [TBL] [Abstract][Full Text] [Related]
20. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Dinauer N; Balthasar S; Weber C; Kreuter J; Langer K; von Briesen H Biomaterials; 2005 Oct; 26(29):5898-906. PubMed ID: 15949555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]