These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16417327)

  • 1. Dehydration in the folding of reduced cytochrome c revealed by the electron-transfer-triggered folding under high pressure.
    Kimura T; Sakamoto K; Morishima I; Ishimori K
    J Am Chem Soc; 2006 Jan; 128(3):670-1. PubMed ID: 16417327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of an equilibrium unfolding intermediate in cytochrome c.
    Latypov RF; Cheng H; Roder NA; Zhang J; Roder H
    J Mol Biol; 2006 Mar; 357(3):1009-25. PubMed ID: 16473367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-native heme-histidine ligation promotes microsecond time scale secondary structure formation in reduced horse heart cytochrome c.
    Chen E; Abel CJ; Goldbeck RA; Kliger DS
    Biochemistry; 2007 Oct; 46(43):12463-72. PubMed ID: 17914866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational properties of the iso-1-cytochrome C denatured state: dependence on guanidine hydrochloride concentration.
    Wandschneider E; Bowler BE
    J Mol Biol; 2004 May; 339(1):185-97. PubMed ID: 15123430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glassy dynamics in the folding landscape of cytochrome c detected by laser photolysis.
    Yadaiah M; Kumar R; Bhuyan AK
    Biochemistry; 2007 Mar; 46(9):2545-51. PubMed ID: 17288455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The folding kinetics of the SDS-induced molten globule form of reduced cytochrome c.
    Chen E; Van Vranken V; Kliger DS
    Biochemistry; 2008 May; 47(19):5450-9. PubMed ID: 18416561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkaline conformational transition and gated electron transfer with a Lys 79 --> his variant of iso-1-cytochrome c.
    Bandi S; Baddam S; Bowler BE
    Biochemistry; 2007 Sep; 46(37):10643-54. PubMed ID: 17713929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-coupled dynamics and folding in cytochrome c.
    Sagle LB; Zimmermann J; Matsuda S; Dawson PE; Romesberg FE
    J Am Chem Soc; 2006 Jun; 128(24):7909-15. PubMed ID: 16771505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-resolution probe of protein folding.
    Sagle LB; Zimmermann J; Dawson PE; Romesberg FE
    J Am Chem Soc; 2004 Mar; 126(11):3384-5. PubMed ID: 15025440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cytochrome c folding landscape revealed by electron-transfer kinetics.
    Lee JC; Chang IJ; Gray HB; Winkler JR
    J Mol Biol; 2002 Jul; 320(2):159-64. PubMed ID: 12079375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding barrier in horse cytochrome c: support for a classical folding pathway.
    Prabhu NP; Kumar R; Bhuyan AK
    J Mol Biol; 2004 Mar; 337(1):195-208. PubMed ID: 15001362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast folding kinetics and stabilization of apo-cytochrome c.
    Borgia A; Gianni S; Brunori M; Travaglini-Allocatelli C
    FEBS Lett; 2008 Mar; 582(6):1003-7. PubMed ID: 18307988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does reorganization energy change upon protein unfolding? Monitoring the structural perturbations in the heme cavity of cytochrome c.
    Shafiey H; Ghourchian H; Mogharrab N
    Biophys Chem; 2008 May; 134(3):225-31. PubMed ID: 18325656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of intermolecular interaction during protein folding of reduced cytochrome c.
    Nishida S; Nada T; Terazima M
    Biophys J; 2004 Oct; 87(4):2663-75. PubMed ID: 15454461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast events in the folding of ferrocytochrome c.
    Kumar R; Prabhu NP; Bhuyan AK
    Biochemistry; 2005 Jul; 44(26):9359-67. PubMed ID: 15982002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of heme on the thermal stability of mesophilic and thermophilic cytochromes c: comparison between experimental and theoretical results.
    Oda K; Kodama R; Yoshidome T; Yamanaka M; Sambongi Y; Kinoshita M
    J Chem Phys; 2011 Jan; 134(2):025101. PubMed ID: 21241149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The earliest events in protein folding: a structural requirement for ultrafast folding in cytochrome C.
    Chen E; Goldbeck RA; Kliger DS
    J Am Chem Soc; 2004 Sep; 126(36):11175-81. PubMed ID: 15355098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of macromolecular crowding on burst phase kinetics of cytochrome c folding.
    Chen E; Christiansen A; Wang Q; Cheung MS; Kliger DS; Wittung-Stafshede P
    Biochemistry; 2012 Dec; 51(49):9836-45. PubMed ID: 23145850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmotic pressure effects identify dehydration upon cytochrome c-cytochrome c oxidase complex formation contributing to a specific electron pathway formation.
    Sato W; Hitaoka S; Uchida T; Shinzawa-Itoh K; Yoshizawa K; Yoshikawa S; Ishimori K
    Biochem J; 2020 Apr; 477(8):1565-1578. PubMed ID: 32250438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mass spectrometry-based probe of equilibrium intermediates in protein-folding reactions.
    Dai SY; Fitzgerald MC
    Biochemistry; 2006 Oct; 45(42):12890-7. PubMed ID: 17042507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.