These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 16417510)

  • 61. Photoproduction of ammonium ion from N2 in Rhodospirillum rubrum.
    Weare NM; Shanmugam KT
    Arch Microbiol; 1976 Nov; 110(23):207-13. PubMed ID: 13753
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Manganese, an essential trace element for N2 fixation by Rhodospirillum rubrum and Rhodopseudomonas capsulata: role in nitrogenase regulation.
    Yoch DC
    J Bacteriol; 1979 Dec; 140(3):987-95. PubMed ID: 42641
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Regulation of nitrogenase activity by reversible ADP ribosylation.
    Ludden PW; Roberts GP
    Curr Top Cell Regul; 1989; 30():23-56. PubMed ID: 2575970
    [No Abstract]   [Full Text] [Related]  

  • 64. Maturation of nitrogenase: a biochemical puzzle.
    Rubio LM; Ludden PW
    J Bacteriol; 2005 Jan; 187(2):405-14. PubMed ID: 15629911
    [No Abstract]   [Full Text] [Related]  

  • 65. Effect of the over-expression of PII and PZ proteins on the nitrogenase activity of Azospirillum brasilense.
    Huergo LF; Filipaki A; Chubatsu LS; Yates MG; Steffens MB; Pedrosa FO; Souza EM
    FEMS Microbiol Lett; 2005 Dec; 253(1):47-54. PubMed ID: 16239079
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Crystal structure of dinitrogenase reductase-activating glycohydrolase (DraG) reveals conservation in the ADP-ribosylhydrolase fold and specific features in the ADP-ribose-binding pocket.
    Li XD; Huergo LF; Gasperina A; Pedrosa FO; Merrick M; Winkler FK
    J Mol Biol; 2009 Jul; 390(4):737-46. PubMed ID: 19477184
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Reversible regulation of the nitrogenase iron protein from Rhodospirillum rubrum by ADP-ribosylation in vitro.
    Lowery RG; Saari LL; Ludden PW
    J Bacteriol; 1986 May; 166(2):513-8. PubMed ID: 3084451
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Characterization of the DraT/DraG system for posttranslational regulation of nitrogenase in the endophytic betaproteobacterium Azoarcus sp. strain BH72.
    Oetjen J; Reinhold-Hurek B
    J Bacteriol; 2009 Jun; 191(11):3726-35. PubMed ID: 19346301
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nitrogenase switch-off and regulation of ammonium assimilation in response to light deprivation in Rhodospirillum rubrum are influenced by the nitrogen source used during growth.
    Teixeira PF; Wang H; Nordlund S
    J Bacteriol; 2010 Mar; 192(5):1463-6. PubMed ID: 20023013
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Regulation of nitrogenase synthesis in intact cells of Rhodospirillum rubrum: inactivation of nitrogen fixation by ammonia, L-glutamine and L-asparagine.
    Neilson AH; Nordlund S
    J Gen Microbiol; 1975 Nov; 91(1):53-62. PubMed ID: 811763
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria.
    Huergo LF; Merrick M; Pedrosa FO; Chubatsu LS; Araujo LM; Souza EM
    Mol Microbiol; 2007 Dec; 66(6):1523-35. PubMed ID: 18028310
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum.
    Zhang Y; Wolfe DM; Pohlmann EL; Conrad MC; Roberts GP
    Microbiology (Reading); 2006 Jul; 152(Pt 7):2075-2089. PubMed ID: 16804182
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regulation of nitrogenase by reversible mono-ADP-ribosylation.
    Moure VR; Costa FF; Cruz LM; Pedrosa FO; Souza EM; Li XD; Winkler F; Huergo LF
    Curr Top Microbiol Immunol; 2015; 384():89-106. PubMed ID: 24934999
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Formation of a cross-linking complex of dinitrogenase reductase-activating glycohydrolase (DRAG) with membrane proteins from Rhodospirillum rubrum chromatophores.
    Akentieva N
    Biochemistry (Mosc); 2008 Feb; 73(2):171-7. PubMed ID: 18298373
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of pyruvate on the metabolic regulation of nitrogenase activity in Rhodospirillum rubrum in darkness.
    Selao TT; Edgren T; Wang H; Norén A; Nordlund S
    Microbiology (Reading); 2011 Jun; 157(Pt 6):1834-1840. PubMed ID: 21393366
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of perturbation of ATP level on the activity and regulation of nitrogenase in Rhodospirillum rubrum.
    Zhang Y; Pohlmann EL; Roberts GP
    J Bacteriol; 2009 Sep; 191(17):5526-37. PubMed ID: 19542280
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Amino acid concentrations in Rhodospirillum rubrum during expression and switch-off of nitrogenase activity.
    Kanemoto RH; Ludden PW
    J Bacteriol; 1987 Jul; 169(7):3035-43. PubMed ID: 2885306
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase.
    Edgren T; Nordlund S
    J Bacteriol; 2004 Apr; 186(7):2052-60. PubMed ID: 15028689
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The cloning and functional characterization of the nifH gene of Rhodospirillum rubrum.
    Lehman LJ; Fitzmaurice WP; Roberts GP
    Gene; 1990 Oct; 95(1):143-7. PubMed ID: 1979299
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Regulation of nitrogenase activity in Rhodobacter capsulatus under dark microoxic conditions.
    Yakunin AF; Hallenbeck PC
    Arch Microbiol; 2000; 173(5-6):366-72. PubMed ID: 10896216
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.