BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 16417523)

  • 1. The chemical chaperone CFcor-325 repairs folding defects in the transmembrane domains of CFTR-processing mutants.
    Loo TW; Bartlett MC; Wang Y; Clarke DM
    Biochem J; 2006 May; 395(3):537-42. PubMed ID: 16417523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific rescue of cystic fibrosis transmembrane conductance regulator processing mutants using pharmacological chaperones.
    Wang Y; Bartlett MC; Loo TW; Clarke DM
    Mol Pharmacol; 2006 Jul; 70(1):297-302. PubMed ID: 16624886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correctors promote folding of the CFTR in the endoplasmic reticulum.
    Loo TW; Bartlett MC; Clarke DM
    Biochem J; 2008 Jul; 413(1):29-36. PubMed ID: 18361776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rescue of DeltaF508 and other misprocessed CFTR mutants by a novel quinazoline compound.
    Loo TW; Bartlett MC; Clarke DM
    Mol Pharm; 2005; 2(5):407-13. PubMed ID: 16196493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rescuing cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by transcomplementation.
    Cormet-Boyaka E; Jablonsky M; Naren AP; Jackson PL; Muccio DD; Kirk KL
    Proc Natl Acad Sci U S A; 2004 May; 101(21):8221-6. PubMed ID: 15141088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating the folding of P-glycoprotein and cystic fibrosis transmembrane conductance regulator truncation mutants with pharmacological chaperones.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    Mol Pharmacol; 2007 Mar; 71(3):751-8. PubMed ID: 17132688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The DeltaF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator.
    Chen EY; Bartlett MC; Loo TW; Clarke DM
    J Biol Chem; 2004 Sep; 279(38):39620-7. PubMed ID: 15272010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms.
    Roxo-Rosa M; Xu Z; Schmidt A; Neto M; Cai Z; Soares CM; Sheppard DN; Amaral MD
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17891-6. PubMed ID: 17098864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chemical corrector modifies the channel function of F508del-CFTR.
    Kim Chiaw P; Wellhauser L; Huan LJ; Ramjeesingh M; Bear CE
    Mol Pharmacol; 2010 Sep; 78(3):411-8. PubMed ID: 20501743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction of the Delta phe508 cystic fibrosis transmembrane conductance regulator trafficking defect by the bioavailable compound glafenine.
    Robert R; Carlile GW; Liao J; Balghi H; Lesimple P; Liu N; Kus B; Rotin D; Wilke M; de Jonge HR; Scholte BJ; Thomas DY; Hanrahan JW
    Mol Pharmacol; 2010 Jun; 77(6):922-30. PubMed ID: 20200141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells.
    Costa de Beauregard MA; Edelman A; Chesnoy-Marchais D; Tondelier D; Lapillonne A; El Marjou F; Robine S; Louvard D
    Eur J Cell Biol; 2000 Nov; 79(11):795-802. PubMed ID: 11139142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repair of CFTR folding defects with correctors that function as pharmacological chaperones.
    Loo TW; Clarke DM
    Methods Mol Biol; 2011; 741():23-37. PubMed ID: 21594776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correctors promote maturation of cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by binding to the protein.
    Wang Y; Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2007 Nov; 282(46):33247-33251. PubMed ID: 17911111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction of the most common cystic fibrosis mutation (Delta F508) into human P-glycoprotein disrupts packing of the transmembrane segments.
    Loo TW; Bartlett MC; Clarke DM
    J Biol Chem; 2002 Aug; 277(31):27585-8. PubMed ID: 12070134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disease-associated mutations in cytoplasmic loops 1 and 2 of cystic fibrosis transmembrane conductance regulator impede processing or opening of the channel.
    Seibert FS; Jia Y; Mathews CJ; Hanrahan JW; Riordan JR; Loo TW; Clarke DM
    Biochemistry; 1997 Sep; 36(39):11966-74. PubMed ID: 9305991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cystic fibrosis V232D mutation inhibits CFTR maturation by disrupting a hydrophobic pocket rather than formation of aberrant interhelical hydrogen bonds.
    Loo TW; Clarke DM
    Biochem Pharmacol; 2014 Mar; 88(1):46-57. PubMed ID: 24412276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corrector-mediated rescue of misprocessed CFTR mutants can be reduced by the P-glycoprotein drug pump.
    Loo TW; Bartlett MC; Shi L; Clarke DM
    Biochem Pharmacol; 2012 Feb; 83(3):345-54. PubMed ID: 22138447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base treatment corrects defects due to misfolding of mutant cystic fibrosis transmembrane conductance regulator.
    Namkung W; Kim KH; Lee MG
    Gastroenterology; 2005 Dec; 129(6):1979-90. PubMed ID: 16344066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rescue of folding defects in ABC transporters using pharmacological chaperones.
    Loo TW; Bartlett MC; Clarke DM
    J Bioenerg Biomembr; 2005 Dec; 37(6):501-7. PubMed ID: 16691490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrector VX-809 stabilizes the first transmembrane domain of CFTR.
    Loo TW; Bartlett MC; Clarke DM
    Biochem Pharmacol; 2013 Sep; 86(5):612-9. PubMed ID: 23835419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.