These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 16417680)

  • 1. Neural mechanisms of cognitive control: an integrative model of stroop task performance and FMRI data.
    Herd SA; Banich MT; O'Reilly RC
    J Cogn Neurosci; 2006 Jan; 18(1):22-32. PubMed ID: 16417680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reading ability is negatively related to Stroop interference.
    Protopapas A; Archonti A; Skaloumbakas C
    Cogn Psychol; 2007 May; 54(3):251-82. PubMed ID: 16962090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges.
    Cohen JD; Braver TS; O'Reilly RC
    Philos Trans R Soc Lond B Biol Sci; 1996 Oct; 351(1346):1515-27. PubMed ID: 8941963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task.
    Seminowicz DA; Davis KD
    J Neurophysiol; 2007 May; 97(5):3651-9. PubMed ID: 17314240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A connectionist model of a continuous developmental transition in the balance scale task.
    Schapiro AC; McClelland JL
    Cognition; 2009 Mar; 110(3):395-411. PubMed ID: 19171326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal activation patterns of lateralized cognitive and task control processes in the human brain.
    Gobbelé R; Lamberty K; Stephan KE; Stegelmeyer U; Buchner H; Marshall JC; Fink GR; Waberski TD
    Brain Res; 2008 Apr; 1205():81-90. PubMed ID: 18353286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Queuing network modeling of the psychological refractory period (PRP).
    Wu C; Liu Y
    Psychol Rev; 2008 Oct; 115(4):913-54. PubMed ID: 18954209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of "analytical-specific visual perception" and degree of task difficulty as investigated by the Mangina-Test: a functional magnetic resonance imaging (fMRI) study in young healthy adults.
    Mangina CA; Beuzeron-Mangina H; Ricciardi E; Pietrini P; Chiarenza GA; Casarotto S
    Int J Psychophysiol; 2009 Aug; 73(2):150-6. PubMed ID: 19414052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Neural mechanism underlying autistic savant and acquired savant syndrome].
    Takahata K; Kato M
    Brain Nerve; 2008 Jul; 60(7):861-9. PubMed ID: 18646626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral and neural evidence for item-specific performance monitoring.
    Blais C; Bunge S
    J Cogn Neurosci; 2010 Dec; 22(12):2758-67. PubMed ID: 19925177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hemodynamics of cognitive control: the level of concentration of oxygenated hemoglobin in the superior prefrontal cortex varies as a function of performance in a modified Stroop task.
    León-Carrion J; Damas-López J; Martín-Rodríguez JF; Domínguez-Roldán JM; Murillo-Cabezas F; Barroso Y Martin JM; Domínguez-Morales MR
    Behav Brain Res; 2008 Nov; 193(2):248-56. PubMed ID: 18606191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stroop performance in normal control subjects: an fMRI study.
    Gruber SA; Rogowska J; Holcomb P; Soraci S; Yurgelun-Todd D
    Neuroimage; 2002 Jun; 16(2):349-60. PubMed ID: 12030821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute tryptophan depletion improves performance and modulates the BOLD response during a Stroop task in healthy females.
    Evers EA; van der Veen FM; Jolles J; Deutz NE; Schmitt JA
    Neuroimage; 2006 Aug; 32(1):248-55. PubMed ID: 16650775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oddball and incongruity effects during Stroop task performance: a comparative fMRI study on selective attention.
    Melcher T; Gruber O
    Brain Res; 2006 Nov; 1121(1):136-49. PubMed ID: 17022954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands.
    Livesey AC; Wall MB; Smith AT
    Neuropsychologia; 2007 Jan; 45(2):321-31. PubMed ID: 16934301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced Stroop interference for opponent colors may be due to input factors: evidence from individual differences and a neural network simulation.
    Laeng B; Låg T; Brennen T
    J Exp Psychol Hum Percept Perform; 2005 Jun; 31(3):438-52. PubMed ID: 15982124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining path analysis with time-resolved functional magnetic resonance imaging: the neurocognitive network underlying mental rotation.
    Ecker C; Brammer MJ; Williams SC
    J Cogn Neurosci; 2008 Jun; 20(6):1003-20. PubMed ID: 18211236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical inefficiency in patients with unipolar depression: an event-related FMRI study with the Stroop task.
    Wagner G; Sinsel E; Sobanski T; Köhler S; Marinou V; Mentzel HJ; Sauer H; Schlösser RG
    Biol Psychiatry; 2006 May; 59(10):958-65. PubMed ID: 16458263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.