BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 16418269)

  • 1. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures.
    Hao G; Derakhshan B; Shi L; Campagne F; Gross SS
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):1012-7. PubMed ID: 16418269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unbiased identification of cysteine S-nitrosylation sites on proteins.
    Derakhshan B; Wille PC; Gross SS
    Nat Protoc; 2007; 2(7):1685-91. PubMed ID: 17641633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Proteomics Analysis of VEGF-Responsive Endothelial Protein S-Nitrosylation Using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and LC-MS/MS.
    Zhang HH; Lechuga TJ; Chen Y; Yang Y; Huang L; Chen DB
    Biol Reprod; 2016 May; 94(5):114. PubMed ID: 27075618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual Labeling Biotin Switch Assay to Reduce Bias Derived From Different Cysteine Subpopulations: A Method to Maximize S-Nitrosylation Detection.
    Chung HS; Murray CI; Venkatraman V; Crowgey EL; Rainer PP; Cole RN; Bomgarden RD; Rogers JC; Balkan W; Hare JM; Kass DA; Van Eyk JE
    Circ Res; 2015 Oct; 117(10):846-57. PubMed ID: 26338901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential S-nitrosylation of proteins in Alzheimer's disease.
    Zahid S; Khan R; Oellerich M; Ahmed N; Asif AR
    Neuroscience; 2014 Jan; 256():126-36. PubMed ID: 24157928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detergent-free biotin switch combined with liquid chromatography/tandem mass spectrometry in the analysis of S-nitrosylated proteins.
    Han P; Chen C
    Rapid Commun Mass Spectrom; 2008 Apr; 22(8):1137-45. PubMed ID: 18335467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry.
    Su D; Shukla AK; Chen B; Kim JS; Nakayasu E; Qu Y; Aryal U; Weitz K; Clauss TR; Monroe ME; Camp DG; Bigelow DJ; Smith RD; Kulkarni RN; Qian WJ
    Free Radic Biol Med; 2013 Apr; 57():68-78. PubMed ID: 23277143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation.
    Marino SM; Gladyshev VN
    J Mol Biol; 2010 Jan; 395(4):844-59. PubMed ID: 19854201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional proteomics approaches for the identification of transnitrosylase and denitrosylase targets.
    Wu C; Parrott AM; Liu T; Beuve A; Li H
    Methods; 2013 Aug; 62(2):151-60. PubMed ID: 23428400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific proteomics approach for study protein S-nitrosylation.
    Liu M; Hou J; Huang L; Huang X; Heibeck TH; Zhao R; Pasa-Tolic L; Smith RD; Li Y; Fu K; Zhang Z; Hinrichs SH; Ding SJ
    Anal Chem; 2010 Sep; 82(17):7160-8. PubMed ID: 20687582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solid-phase capture for the detection and relative quantification of S-nitrosoproteins by mass spectrometry.
    Thompson JW; Forrester MT; Moseley MA; Foster MW
    Methods; 2013 Aug; 62(2):130-7. PubMed ID: 23064468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases.
    Chen YY; Huang YF; Khoo KH; Meng TC
    Methods; 2007 Jul; 42(3):243-9. PubMed ID: 17532511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein S-nitrosylation and denitrosylation in the mouse spinal cord upon injury of the sciatic nerve.
    Scheving R; Wittig I; Heide H; Albuquerque B; Steger M; Brandt U; Tegeder I
    J Proteomics; 2012 Jul; 75(13):3987-4004. PubMed ID: 22588120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput endogenous measurement of S-nitrosylation in Alzheimer's disease using oxidized cysteine-selective cPILOT.
    Gu L; Robinson RA
    Analyst; 2016 Jun; 141(12):3904-15. PubMed ID: 27152368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved sulfur-nitroso-proteome strategy for global profiling of sulfur-nitrosylated proteins and sulfur-nitrosylation sites in mice.
    Yang H; Wang L; Xie Z; Shao S; Wu Y; Xu W; Gu B; Wang B
    J Chromatogr A; 2023 Aug; 1705():464162. PubMed ID: 37336129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay.
    Murray CI; Uhrigshardt H; O'Meally RN; Cole RN; Van Eyk JE
    Mol Cell Proteomics; 2012 Feb; 11(2):M111.013441. PubMed ID: 22126794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome.
    Paulech J; Solis N; Edwards AV; Puckeridge M; White MY; Cordwell SJ
    Anal Chem; 2013 Apr; 85(7):3774-80. PubMed ID: 23438843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor.
    Beuve A; Wu C; Cui C; Liu T; Jain MR; Huang C; Yan L; Kholodovych V; Li H
    J Proteomics; 2016 Apr; 138():40-7. PubMed ID: 26917471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications.
    Guo J; Gaffrey MJ; Su D; Liu T; Camp DG; Smith RD; Qian WJ
    Nat Protoc; 2014 Jan; 9(1):64-75. PubMed ID: 24336471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening systems for the identification of S-nitrosylated proteins.
    Uehara T; Nishiya T
    Nitric Oxide; 2011 Aug; 25(2):108-11. PubMed ID: 21111056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.