These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 16418269)

  • 21. Characterization of Macrophage Endogenous S-Nitrosoproteome Using a Cysteine-Specific Phosphonate Adaptable Tag in Combination with TiO
    Ibáñez-Vea M; Huang H; Martínez de Morentin X; Pérez E; Gato M; Zuazo M; Arasanz H; Fernández-Irigoyen J; Santamaría E; Fernandez-Hinojal G; Larsen MR; Escors D; Kochan G
    J Proteome Res; 2018 Mar; 17(3):1172-1182. PubMed ID: 29338241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methodologies for the characterization, identification and quantification of S-nitrosylated proteins.
    Foster MW
    Biochim Biophys Acta; 2012 Jun; 1820(6):675-83. PubMed ID: 21440604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peroxynitrite modification of protein thiols: oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase.
    Viner RI; Williams TD; Schöneich C
    Biochemistry; 1999 Sep; 38(38):12408-15. PubMed ID: 10493809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique.
    Mnatsakanyan R; Markoutsa S; Walbrunn K; Roos A; Verhelst SHL; Zahedi RP
    Nat Commun; 2019 May; 10(1):2195. PubMed ID: 31097712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comprehensive identification and modified-site mapping of S-nitrosylated targets in prostate epithelial cells.
    Lam YW; Yuan Y; Isaac J; Babu CV; Meller J; Ho SM
    PLoS One; 2010 Feb; 5(2):e9075. PubMed ID: 20140087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of reversible cysteine-targeted protein oxidation by an endogenous electrophile 15-deoxy-delta12,14-prostaglandin J2.
    Ishii T; Uchida K
    Chem Res Toxicol; 2004 Oct; 17(10):1313-22. PubMed ID: 15487891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress.
    Forrester MT; Foster MW; Stamler JS
    J Biol Chem; 2007 May; 282(19):13977-83. PubMed ID: 17376775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of mitochondrial S-nitrosylation by CysTMT⁶ switch assay.
    Murray CI; Chung HS; Uhrigshardt H; Van Eyk JE
    Methods Mol Biol; 2013; 1005():169-79. PubMed ID: 23606257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and application of site-specific proteomic approach for study protein S-nitrosylation.
    Liu M; Talmadge JE; Ding SJ
    Amino Acids; 2012 May; 42(5):1541-51. PubMed ID: 22476348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational prediction of candidate proteins for S-nitrosylation in Arabidopsis thaliana.
    Chaki M; Kovacs I; Spannagl M; Lindermayr C
    PLoS One; 2014; 9(10):e110232. PubMed ID: 25333472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. dbSNO: a database of cysteine S-nitrosylation.
    Lee TY; Chen YJ; Lu CT; Ching WC; Teng YC; Huang HD; Chen YJ
    Bioinformatics; 2012 Sep; 28(17):2293-5. PubMed ID: 22782549
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Proteomics Workflow for Dual Labeling Biotin Switch Assay to Detect and Quantify Protein S-Nitroylation.
    Chung HS; Murray CI; Van Eyk JE
    Methods Mol Biol; 2018; 1747():89-101. PubMed ID: 29600453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. S-nitrosation of proteins relevant to Alzheimer's disease during early stages of neurodegeneration.
    Seneviratne U; Nott A; Bhat VB; Ravindra KC; Wishnok JS; Tsai LH; Tannenbaum SR
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):4152-7. PubMed ID: 27035958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. S-alkylating labeling strategy for site-specific identification of the s-nitrosoproteome.
    Chen YJ; Ku WC; Lin PY; Chou HC; Khoo KH; Chen YJ
    J Proteome Res; 2010 Dec; 9(12):6417-39. PubMed ID: 20925432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation.
    Chen YY; Chu HM; Pan KT; Teng CH; Wang DL; Wang AH; Khoo KH; Meng TC
    J Biol Chem; 2008 Dec; 283(50):35265-72. PubMed ID: 18840608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the cysteine nitrosylation sites in human endothelial nitric oxide synthase.
    Tummala M; Ryzhov V; Ravi K; Black SM
    DNA Cell Biol; 2008 Jan; 27(1):25-33. PubMed ID: 17941803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On-gel fluorescent visualization and the site identification of S-nitrosylated proteins.
    Han P; Zhou X; Huang B; Zhang X; Chen C
    Anal Biochem; 2008 Jun; 377(2):150-5. PubMed ID: 18395505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The SNO/SOH TMT strategy for combinatorial analysis of reversible cysteine oxidations.
    Wojdyla K; Williamson J; Roepstorff P; Rogowska-Wrzesinska A
    J Proteomics; 2015 Jan; 113():415-34. PubMed ID: 25449835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.