These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 16418315)
1. Support vector machines in HTS data mining: Type I MetAPs inhibition study. Fang J; Dong Y; Lushington GH; Ye QZ; Georg GI J Biomol Screen; 2006 Mar; 11(2):138-44. PubMed ID: 16418315 [TBL] [Abstract][Full Text] [Related]
2. Application of validated QSAR models of D1 dopaminergic antagonists for database mining. Oloff S; Mailman RB; Tropsha A J Med Chem; 2005 Nov; 48(23):7322-32. PubMed ID: 16279792 [TBL] [Abstract][Full Text] [Related]
3. Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds. Shen M; Béguin C; Golbraikh A; Stables JP; Kohn H; Tropsha A J Med Chem; 2004 Apr; 47(9):2356-64. PubMed ID: 15084134 [TBL] [Abstract][Full Text] [Related]
4. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. Votano JR; Parham M; Hall LM; Hall LH; Kier LB; Oloff S; Tropsha A J Med Chem; 2006 Nov; 49(24):7169-81. PubMed ID: 17125269 [TBL] [Abstract][Full Text] [Related]
5. Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps. Marrero-Ponce Y; Iyarreta-Veitía M; Montero-Torres A; Romero-Zaldivar C; Brandt CA; Avila PE; Kirchgatter K; Machado Y J Chem Inf Model; 2005; 45(4):1082-100. PubMed ID: 16045304 [TBL] [Abstract][Full Text] [Related]
6. Enrichment of high-throughput screening data with increasing levels of noise using support vector machines, recursive partitioning, and laplacian-modified naive bayesian classifiers. Glick M; Jenkins JL; Nettles JH; Hitchings H; Davies JW J Chem Inf Model; 2006; 46(1):193-200. PubMed ID: 16426055 [TBL] [Abstract][Full Text] [Related]
8. Data mining PubChem using a support vector machine with the Signature molecular descriptor: classification of factor XIa inhibitors. Weis DC; Visco DP; Faulon JL J Mol Graph Model; 2008 Nov; 27(4):466-75. PubMed ID: 18829357 [TBL] [Abstract][Full Text] [Related]
9. A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability. Leong MK Chem Res Toxicol; 2007 Feb; 20(2):217-26. PubMed ID: 17261034 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds. Ma XH; Wang R; Yang SY; Li ZR; Xue Y; Wei YC; Low BC; Chen YZ J Chem Inf Model; 2008 Jun; 48(6):1227-37. PubMed ID: 18533644 [TBL] [Abstract][Full Text] [Related]
11. Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity. Pourbasheer E; Riahi S; Ganjali MR; Norouzi P Eur J Med Chem; 2009 Dec; 44(12):5023-8. PubMed ID: 19837488 [TBL] [Abstract][Full Text] [Related]
12. Support vector machine-based quantitative structure-activity relationship study of cholesteryl ester transfer protein inhibitors. Riahi S; Pourbasheer E; Ganjali MR; Norouzi P Chem Biol Drug Des; 2009 May; 73(5):558-71. PubMed ID: 19323654 [TBL] [Abstract][Full Text] [Related]
13. A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine. Fatemi MH; Gharaghani S Bioorg Med Chem; 2007 Dec; 15(24):7746-54. PubMed ID: 17870538 [TBL] [Abstract][Full Text] [Related]
15. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores. Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012 [TBL] [Abstract][Full Text] [Related]
16. In silico prediction of mitochondrial toxicity by using GA-CG-SVM approach. Zhang H; Chen QY; Xiang ML; Ma CY; Huang Q; Yang SY Toxicol In Vitro; 2009 Feb; 23(1):134-40. PubMed ID: 18940245 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. Yao XJ; Panaye A; Doucet JP; Zhang RS; Chen HF; Liu MC; Hu ZD; Fan BT J Chem Inf Comput Sci; 2004; 44(4):1257-66. PubMed ID: 15272833 [TBL] [Abstract][Full Text] [Related]
18. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation. Tang H; Wang XS; Huang XP; Roth BL; Butler KV; Kozikowski AP; Jung M; Tropsha A J Chem Inf Model; 2009 Feb; 49(2):461-76. PubMed ID: 19182860 [TBL] [Abstract][Full Text] [Related]
19. High-throughput screening and quantitative structure-efficacy relationship models of potential displacer molecules for ion-exchange systems. Mazza CB; Rege K; Breneman CM; Sukumar N; Dordick JS; Cramer SM Biotechnol Bioeng; 2002 Oct; 80(1):60-72. PubMed ID: 12209787 [TBL] [Abstract][Full Text] [Related]
20. GPU accelerated support vector machines for mining high-throughput screening data. Liao Q; Wang J; Webster Y; Watson IA J Chem Inf Model; 2009 Dec; 49(12):2718-25. PubMed ID: 19961205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]