These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 16418891)

  • 1. Evaluation of aquatic toxicities of chromium and chromium-containing effluents in reference to chromium electroplating industries.
    Baral A; Engelken R; Stephens W; Farris J; Hannigan R
    Arch Environ Contam Toxicol; 2006 May; 50(4):496-502. PubMed ID: 16418891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory scale studies on removal of chromium from industrial wastes.
    Baig MA; Mir M; Murtaza S; Bhatti ZI
    J Environ Sci (China); 2003 May; 15(3):417-22. PubMed ID: 12938996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of different industrial effluents in Taiwan: a comparison of the sensitivity of Daphnia similis and Microtox.
    Liu MC; Chen CM; Cheng HY; Chen HY; Su YC; Hung TY
    Environ Toxicol; 2002; 17(2):93-7. PubMed ID: 11979586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of Penicillium chrysogenum PTCC 5037 in reducing low concentration of chromium hexavalent in a chromium electroplating plant wastewater.
    Pazouki M; Keyanpour-Rad M; Shafie Sh; Shahhoseini Sh
    Bioresour Technol; 2007 Aug; 98(11):2116-22. PubMed ID: 17035005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aquatic toxicity of nitrogen mustard to Ceriodaphina dubia, Daphnia magna, and Pimephales promelas.
    Lan CH; Lin TS; Peng CY
    Ecotoxicol Environ Saf; 2005 Jun; 61(2):273-9. PubMed ID: 15883099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of chromium from electroplating industry effluents by ion exchange resins.
    Cavaco SA; Fernandes S; Quina MM; Ferreira LM
    J Hazard Mater; 2007 Jun; 144(3):634-8. PubMed ID: 17336455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium removal from electroplating wastewater by coir pith.
    Suksabye P; Thiravetyan P; Nakbanpote W; Chayabutra S
    J Hazard Mater; 2007 Mar; 141(3):637-44. PubMed ID: 16919872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthetic activity and protein overexpression found in Cr(III)-tolerant cells of the green algae Dictyosphaerium chlorelloides.
    Pereira M; Bartolomé CM; Sánchez-Fortún S
    Chemosphere; 2014 Aug; 108():274-80. PubMed ID: 24556547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of chromium (VI) from aqueous solutions using water lilies (Nymphaea spontanea).
    Choo TP; Lee CK; Low KS; Hishamuddin O
    Chemosphere; 2006 Feb; 62(6):961-7. PubMed ID: 16081131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr(VI)] contaminated electroplating wastewater under sulfate-rich condition.
    Chang IS; Kim BH
    Chemosphere; 2007 Jun; 68(2):218-26. PubMed ID: 17337035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of hexavalent chromium by Sphaerotilus natans a filamentous micro-organism present in activated sludges.
    Caravelli AH; Giannuzzi L; Zaritzky NE
    J Hazard Mater; 2008 Aug; 156(1-3):214-22. PubMed ID: 18215460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of chelating ion-exchange resins for separating Cr(III) from industrial effluents.
    Cavaco SA; Fernandes S; Augusto CM; Quina MJ; Gando-Ferreira LM
    J Hazard Mater; 2009 Sep; 169(1-3):516-23. PubMed ID: 19406569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water.
    Mohan D; Pittman CU
    J Hazard Mater; 2006 Sep; 137(2):762-811. PubMed ID: 16904258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity identification in metal plating effluent: implications in establishing effluent discharge limits using bioassays in Korea.
    Kim E; Jun YR; Jo HJ; Shim SB; Jung J
    Mar Pollut Bull; 2008; 57(6-12):637-44. PubMed ID: 18406429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of Cr(VI) from wastewaters at semi-industrial electrochemical reactors with rotating ring electrodes.
    Rodríguez R MG; Mendoza V; Puebla H; Martínez D SA
    J Hazard Mater; 2009 Apr; 163(2-3):1221-9. PubMed ID: 18775602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute toxicity assessment of textile dyes and textile and dye industrial effluents using Daphnia magna bioassay.
    Verma Y
    Toxicol Ind Health; 2008 Aug; 24(7):491-500. PubMed ID: 19028775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extractive separation and determination of chromium in tannery effluents and electroplating waste water using tribenzylamine as the extractant.
    Kalidhasan S; Ganesh M; Sricharan S; Rajesh N
    J Hazard Mater; 2009 Jun; 165(1-3):886-92. PubMed ID: 19135302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental monitoring of chromium in air, soil, and water.
    Vitale RJ; Mussoline GR; Rinehimer KA
    Regul Toxicol Pharmacol; 1997 Aug; 26(1 Pt 2):S80-5. PubMed ID: 9380841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute toxicity by water containing hexavalent or trivalent chromium in native Brazilian fish, Piaractus mesopotamicus: anatomopathological alterations and mortality.
    Castro MP; de Moraes FR; Fujimoto RY; da Cruz C; Belo MA; de Moraes JR
    Bull Environ Contam Toxicol; 2014 Feb; 92(2):213-9. PubMed ID: 24346495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the Biotic Ligand Model relative to other site-specific criteria derivation methods for copper in surface waters with elevated hardness.
    Van Genderen E; Gensemer R; Smith C; Santore R; Ryan A
    Aquat Toxicol; 2007 Aug; 84(2):279-91. PubMed ID: 17681387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.