These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 16419062)
1. Study on the redox state dependent gamma(CH) vibrational modes of the c-type heme. Dörr S; Wolpert M; Hellwig P Biopolymers; 2006 Jul; 82(4):349-52. PubMed ID: 16419062 [TBL] [Abstract][Full Text] [Related]
2. Redox dependent changes at the heme propionates in cytochrome c oxidase from Paracoccus denitrificans: direct evidence from FTIR difference spectroscopy in combination with heme propionate 13C labeling. Behr J; Hellwig P; Mäntele W; Michel H Biochemistry; 1998 May; 37(20):7400-6. PubMed ID: 9585554 [TBL] [Abstract][Full Text] [Related]
3. Low-frequency heme, iron-ligand, and ligand modes of imidazole and imidazolate complexes of iron protoporphyrin and microperoxidase in aqueous solution. An analysis by far-infrared difference spectroscopy. Marboutin L; Desbois A; Berthomieu C J Phys Chem B; 2009 Apr; 113(13):4492-9. PubMed ID: 19320527 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical and ultraviolet/visible/infrared spectroscopic analysis of heme a and a3 redox reactions in the cytochrome c oxidase from Paracoccus denitrificans: separation of heme a and a3 contributions and assignment of vibrational modes. Hellwig P; Grzybek S; Behr J; Ludwig B; Michel H; Mäntele W Biochemistry; 1999 Feb; 38(6):1685-94. PubMed ID: 10026246 [TBL] [Abstract][Full Text] [Related]
5. [Visible spectral character of heme iron in biomacromolecules]. Li RQ; Chen Y; Jiang FY Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jan; 24(1):95-7. PubMed ID: 15768987 [TBL] [Abstract][Full Text] [Related]
6. Redox titration of all electron carriers of cytochrome c oxidase by Fourier transform infrared spectroscopy. Gorbikova EA; Vuorilehto K; Wikström M; Verkhovsky MI Biochemistry; 2006 May; 45(17):5641-9. PubMed ID: 16634645 [TBL] [Abstract][Full Text] [Related]
7. Mid- to low-frequency Fourier transform infrared spectra of S-state cycle for photosynthetic water oxidation in Synechocystis sp. PCC 6803. Yamanari T; Kimura Y; Mizusawa N; Ishii A; Ono TA Biochemistry; 2004 Jun; 43(23):7479-90. PubMed ID: 15182190 [TBL] [Abstract][Full Text] [Related]
8. [A non-resonance surface-enhanced Raman spectroscopic study of hemin on a roughened silver electrode]. Zheng JW; Li XW; Xu HY; Zhou YG; Gu RA Guang Pu Xue Yu Guang Pu Fen Xi; 2003 Apr; 23(2):294-6. PubMed ID: 12961875 [TBL] [Abstract][Full Text] [Related]
9. A1 reduction in intact cyanobacterial photosystem I particles studied by time-resolved step-scan Fourier transform infrared difference spectroscopy and isotope labeling. Sivakumar V; Wang R; Hastings G Biochemistry; 2005 Feb; 44(6):1880-93. PubMed ID: 15697214 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the CuA center in the cytochrome c oxidase from Thermus thermophilus for the spectral range 1800-500 cm-1 with a combined electrochemical and Fourier transform infrared spectroscopic setup. Wolpert M; Maneg O; Ludwig B; Hellwig P Biopolymers; 2004 May-Jun 5; 74(1-2):73-6. PubMed ID: 15137098 [TBL] [Abstract][Full Text] [Related]
12. Direct observation of redox-linked histidine protonation changes in the iron-sulfur protein of the cytochrome bc1 complex by ATR-FTIR spectroscopy. Iwaki M; Yakovlev G; Hirst J; Osyczka A; Dutton PL; Marshall D; Rich PR Biochemistry; 2005 Mar; 44(11):4230-7. PubMed ID: 15766251 [TBL] [Abstract][Full Text] [Related]
13. Electrochemically induced FTIR difference spectroscopy in the mid- to far infrared (200 microm) domain: a new setup for the analysis of metal-ligand interactions in redox proteins. Berthomieu C; Marboutin L; Dupeyrat F; Bouyer P Biopolymers; 2006 Jul; 82(4):363-7. PubMed ID: 16453337 [TBL] [Abstract][Full Text] [Related]
14. Monitoring redox-dependent contribution of lipids in Fourier transform infrared difference spectra of complex I from Escherichia coli. Hielscher R; Wenz T; Stolpe S; Hunte C; Friedrich T; Hellwig P Biopolymers; 2006 Jul; 82(4):291-4. PubMed ID: 16358245 [TBL] [Abstract][Full Text] [Related]
15. Redox infrared markers of the heme and axial ligands in microperoxidase: Bases for the analysis of c-type cytochromes. Marboutin L; Boussac A; Berthomieu C J Biol Inorg Chem; 2006 Oct; 11(7):811-23. PubMed ID: 16783544 [TBL] [Abstract][Full Text] [Related]
16. Internal electric field in cytochrome C explored by visible electronic circular dichroism spectroscopy. Schweitzer-Stenner R J Phys Chem B; 2008 Aug; 112(33):10358-66. PubMed ID: 18665633 [TBL] [Abstract][Full Text] [Related]
17. Redox-coupled dynamics and folding in cytochrome c. Sagle LB; Zimmermann J; Matsuda S; Dawson PE; Romesberg FE J Am Chem Soc; 2006 Jun; 128(24):7909-15. PubMed ID: 16771505 [TBL] [Abstract][Full Text] [Related]
18. ATR-FTIR spectroscopy and isotope labeling of the PM intermediate of Paracoccus denitrificans cytochrome c oxidase. Iwaki M; Puustinen A; Wikström M; Rich PR Biochemistry; 2004 Nov; 43(45):14370-8. PubMed ID: 15533041 [TBL] [Abstract][Full Text] [Related]
19. Redox-induced conformational changes in plastocyanin: an infrared study. Taneva SG; Kaiser U; Donchev AA; Dimitrov MI; Mäntele W; Muga A Biochemistry; 1999 Jul; 38(30):9640-7. PubMed ID: 10423242 [TBL] [Abstract][Full Text] [Related]
20. Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface-modified electrodes. Ataka K; Heberle J J Am Chem Soc; 2004 Aug; 126(30):9445-57. PubMed ID: 15281838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]