These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 16419835)
1. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight. Hiryu S; Katsura K; Lin LK; Riquimaroux H; Watanabe Y J Acoust Soc Am; 2005 Dec; 118(6):3927-33. PubMed ID: 16419835 [TBL] [Abstract][Full Text] [Related]
2. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude. Hiryu S; Shiori Y; Hosokawa T; Riquimaroux H; Watanabe Y J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454 [TBL] [Abstract][Full Text] [Related]
3. Echolocation and flight behavior of the bat Warnecke M; Falk B; Moss CF J Acoust Soc Am; 2018 Aug; 144(2):806. PubMed ID: 30180698 [TBL] [Abstract][Full Text] [Related]
4. Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members. Hiryu S; Katsura K; Nagato T; Yamazaki H; Lin LK; Watanabe Y; Riquimaroux H J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Aug; 192(8):807-15. PubMed ID: 16538514 [TBL] [Abstract][Full Text] [Related]
5. Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone. Hiryu S; Hagino T; Riquimaroux H; Watanabe Y J Acoust Soc Am; 2007 Mar; 121(3):1749-57. PubMed ID: 17407911 [TBL] [Abstract][Full Text] [Related]
6. Rapid frequency control of sonar sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap. Hase K; Miyamoto T; Kobayasi KI; Hiryu S Behav Processes; 2016 Jul; 128():126-33. PubMed ID: 27157002 [TBL] [Abstract][Full Text] [Related]
7. Reconstruction of echoes reaching bats in flight from arbitrary targets by acoustic simulation. Teshima Y; Hasegawa Y; Tsuchiya T; Moriyama R; Genda S; Kawamura T; Hiryu S J Acoust Soc Am; 2022 Mar; 151(3):2127. PubMed ID: 35364898 [TBL] [Abstract][Full Text] [Related]
8. Precise Doppler shift compensation in the hipposiderid bat, Hipposideros armiger. Schoeppler D; Schnitzler HU; Denzinger A Sci Rep; 2018 Mar; 8(1):4598. PubMed ID: 29545520 [TBL] [Abstract][Full Text] [Related]
9. Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task. Kinoshita Y; Ogata D; Watanabe Y; Riquimaroux H; Ohta T; Hiryu S J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Sep; 200(9):799-809. PubMed ID: 24958227 [TBL] [Abstract][Full Text] [Related]
10. Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey. Mantani S; Hiryu S; Fujioka E; Matsuta N; Riquimaroux H; Watanabe Y J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Oct; 198(10):741-51. PubMed ID: 22777677 [TBL] [Abstract][Full Text] [Related]
11. The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses. Boonman AM; Parsons S; Jones G J Acoust Soc Am; 2003 Jan; 113(1):617-28. PubMed ID: 12558297 [TBL] [Abstract][Full Text] [Related]
12. Biosonar signals and cerebellar auditory neurons of the mustached bat. Horikawa J; Suga N J Neurophysiol; 1986 Jun; 55(6):1247-67. PubMed ID: 3734857 [TBL] [Abstract][Full Text] [Related]
13. 'Compromise' in Echolocation Calls between Different Colonies of the Intermediate Leaf-Nosed Bat (Hipposideros larvatus). Chen Y; Liu Q; Su Q; Sun Y; Peng X; He X; Zhang L PLoS One; 2016; 11(3):e0151382. PubMed ID: 27029005 [TBL] [Abstract][Full Text] [Related]
14. Listening for bats: the hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field. Schul J; Matt F; von Helversen O Proc Biol Sci; 2000 Sep; 267(1454):1711-5. PubMed ID: 12233766 [TBL] [Abstract][Full Text] [Related]
15. Biosonar behavior of mustached bats swung on a pendulum prior to cortical ablation. Gaioni SJ; Riquimaroux H; Suga N J Neurophysiol; 1990 Dec; 64(6):1801-17. PubMed ID: 2074465 [TBL] [Abstract][Full Text] [Related]
16. Adaptive changes in echolocation sounds by Pipistrellus abramus in response to artificial jamming sounds. Takahashi E; Hyomoto K; Riquimaroux H; Watanabe Y; Ohta T; Hiryu S J Exp Biol; 2014 Aug; 217(Pt 16):2885-91. PubMed ID: 25122918 [TBL] [Abstract][Full Text] [Related]
17. Convergence of reference frequencies by multiple CF-FM bats (Rhinolophus ferrumequinum nippon) during paired flights evaluated with onboard microphones. Furusawa Y; Hiryu S; Kobayasi KI; Riquimaroux H J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Sep; 198(9):683-93. PubMed ID: 22717760 [TBL] [Abstract][Full Text] [Related]
18. Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information. Olsen JF; Suga N J Neurophysiol; 1991 Jun; 65(6):1254-74. PubMed ID: 1875241 [TBL] [Abstract][Full Text] [Related]
19. Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency. Metzner W; Zhang S; Smotherman M J Exp Biol; 2002 Jun; 205(Pt 11):1607-16. PubMed ID: 12000805 [TBL] [Abstract][Full Text] [Related]
20. Echolocation and flight strategy of Japanese house bats during natural foraging, revealed by a microphone array system. Fujioka E; Mantani S; Hiryu S; Riquimaroux H; Watanabe Y J Acoust Soc Am; 2011 Feb; 129(2):1081-8. PubMed ID: 21361464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]