BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1642041)

  • 1. [Effect of shock waves on the strength of connection between bone and polymethylmethacrylate. An in vitro study of human femur segments].
    Braun W; Claes L; Rüter A; Paschke D
    Z Orthop Ihre Grenzgeb; 1992; 130(3):236-43. PubMed ID: 1642041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of extracorporeal shockwaves on the stability of the interface between bone and polymethylmethacrylate: an in vitro study on human femoral segments.
    Braun W; Claes L; Rüter A; Paschke D
    Clin Biomech (Bristol, Avon); 1992 Feb; 7(1):47-54. PubMed ID: 23915617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Work-in-progress #1. The lithotriptor and its potential use in the revision of total hip arthroplasty.
    Karpman RR; Magee FP; Gruen TW; Mobley T
    Orthop Rev; 1987 Jan; 16(1):38-42. PubMed ID: 3453956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Would revision arthroplasty be facilitated by extracorporeal shock wave lithotripsy? An evaluation including whole bone strength in dogs.
    Stranne SK; Callaghan JJ; Cocks FH; Weinerth JL; Seaber AV; Myers BS
    Clin Orthop Relat Res; 1993 Feb; (287):252-8. PubMed ID: 8448953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction in cement-bone interface shear strength between primary and revision arthroplasty.
    Dohmae Y; Bechtold JE; Sherman RE; Puno RM; Gustilo RB
    Clin Orthop Relat Res; 1988 Nov; (236):214-20. PubMed ID: 3180573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the extracorporeal shock wave lithotriptor on bone cement.
    Schreurs BW; Bierkens AF; Huiskes R; Hendrikx AJ; Slooff TJ
    J Biomed Mater Res; 1991 Feb; 25(2):157-64. PubMed ID: 2055913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of the extracorporeal shock wave lithotriptor on the bone-cement interface in dogs.
    Weinstein JN; Oster DM; Park JB; Park SH; Loening S
    Clin Orthop Relat Res; 1988 Oct; (235):261-7. PubMed ID: 3416532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of extracorporeal shock wave lithotripter (ECSWL) in orthopedics. I. Foundations and overview.
    Park SH; Park JB; Weinstein JN; Loening S
    J Appl Biomater; 1991; 2(2):115-26. PubMed ID: 10149079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of a thin coating of polymethylmethacrylate on the torsional fatigue strength of the cement-metal interface.
    Davies JP; Singer G; Harris WH
    J Appl Biomater; 1992; 3(1):45-9. PubMed ID: 10147704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Influence of proximal stem geometry and stem-cement interface characteristics on bone and cement stresses in femoral hip arthroplasty: finite element analysis].
    Massin P; Astoin E; Lavaste F
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Apr; 89(2):134-43. PubMed ID: 12844057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement of PMMA bone cement with a continuous wire coil--a 3D finite element study.
    Frigstad JR; Park JB
    Biomed Mater Eng; 1996; 6(6):429-39. PubMed ID: 9138653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical characteristics of the bone-graft-cement interface after impaction allografting.
    Frei H; Mitchell P; Masri BA; Duncan CP; Oxland TR
    J Orthop Res; 2005 Jan; 23(1):9-17. PubMed ID: 15607869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of cement pressure and bone strength on polymethylmethacrylate fixation.
    Askew MJ; Steege JW; Lewis JL; Ranieri JR; Wixson RL
    J Orthop Res; 1984; 1(4):412-20. PubMed ID: 6491790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal/cement interface strength in cemented stem fixation.
    Ahmed AM; Raab S; Miller JE
    J Orthop Res; 1984; 2(2):105-18. PubMed ID: 6491806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical strength of poly(methyl methacrylate) cement-human bone interfaces.
    Kusleika R; Stupp SI
    J Biomed Mater Res; 1983 May; 17(3):441-58. PubMed ID: 6863348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of ultrasonic shock waves on the bone-bone cement interface].
    Hach J; Benes A; Hani AB; Sosna A; Sunka P
    Acta Chir Orthop Traumatol Cech; 2001; 68(5):300-3. PubMed ID: 11759472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cement removal in revision total hip arthroplasty.
    Lombardi AV
    Semin Arthroplasty; 1992 Oct; 3(4):264-72. PubMed ID: 10147936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of shock wave treatment on femoral prosthesis and cement removal.
    Kim JK; Park JB; Weinstein JN; Marsh JL; Kim YS; Loening SA
    Biomed Mater Eng; 1994; 4(6):451-61. PubMed ID: 7833788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of stem length on mechanics of the femoral hip component after cemented revision.
    Mann KA; Ayers DC; Damron TA
    J Orthop Res; 1997 Jan; 15(1):62-8. PubMed ID: 9066528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [An original procedure for cement diaphyseal extraction. The segmental cement extraction system or SEG-CES].
    Cordonnier D; Desrousseaux JF; Polveche G; Rattier B; d'Almeida M; Vinchon B
    Rev Chir Orthop Reparatrice Appar Mot; 1996; 82(2):166-70. PubMed ID: 8761103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.