BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16420422)

  • 21. Temporal development of cyclic nucleotide-gated and Ca2+ -activated Cl- currents in isolated mouse olfactory sensory neurons.
    Boccaccio A; Menini A
    J Neurophysiol; 2007 Jul; 98(1):153-60. PubMed ID: 17460108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding.
    Franks KM; Isaacson JS
    Neuron; 2006 Feb; 49(3):357-63. PubMed ID: 16446140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium.
    Dooley R; Mashukova A; Toetter B; Hatt H; Neuhaus EM
    BMC Neurosci; 2011 Aug; 12():86. PubMed ID: 21859486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibitory K+ current activated by odorants in toad olfactory neurons.
    Morales B; Ugarte G; Labarca P; Bacigalupo J
    Proc Biol Sci; 1994 Sep; 257(1350):235-42. PubMed ID: 7991632
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation between olfactory receptor cell type and function in the channel catfish.
    Hansen A; Rolen SH; Anderson K; Morita Y; Caprio J; Finger TE
    J Neurosci; 2003 Oct; 23(28):9328-39. PubMed ID: 14561860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cascades of response vectors of olfactory receptor neurons in Xenopus laevis tadpoles.
    Schild D; Manzini I
    Eur J Neurosci; 2004 Oct; 20(8):2111-23. PubMed ID: 15450090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell type-specific relationships between spiking and [Ca2+]i in neurons of the Xenopus tadpole olfactory bulb.
    Lin BJ; Chen TW; Schild D
    J Physiol; 2007 Jul; 582(Pt 1):163-75. PubMed ID: 17463049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cannabinoid action in the olfactory epithelium.
    Czesnik D; Schild D; Kuduz J; Manzini I
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2967-72. PubMed ID: 17301239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The endocannabinoid 2-arachidonoyl-glycerol controls odor sensitivity in larvae of Xenopus laevis.
    Breunig E; Manzini I; Piscitelli F; Gutermann B; Di Marzo V; Schild D; Czesnik D
    J Neurosci; 2010 Jun; 30(26):8965-73. PubMed ID: 20592217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fine structure of three types of olfactory organs in Xenopus laevis.
    Oikawa T; Suzuki K; Saito TR; Takahashi KW; Taniguchi K
    Anat Rec; 1998 Oct; 252(2):301-10. PubMed ID: 9776085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ATP mediates neuroprotective and neuroproliferative effects in mouse olfactory epithelium following exposure to satratoxin G in vitro and in vivo.
    Jia C; Sangsiri S; Belock B; Iqbal TR; Pestka JJ; Hegg CC
    Toxicol Sci; 2011 Nov; 124(1):169-78. PubMed ID: 21865290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of Xenopus laevis water nose to water-soluble and volatile odorants.
    Iida A; Kashiwayanagi M
    J Gen Physiol; 1999 Jul; 114(1):85-92. PubMed ID: 10398694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Presynaptic protein distribution and odour mapping in glomeruli of the olfactory bulb of Xenopus laevis tadpoles.
    Manzini I; Heermann S; Czesnik D; Brase C; Schild D; Rössler W
    Eur J Neurosci; 2007 Aug; 26(4):925-34. PubMed ID: 17666078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclic nucleotide-activated currents in cultured olfactory receptor neurons of the hawkmoth Manduca sexta.
    Krannich S; Stengl M
    J Neurophysiol; 2008 Nov; 100(5):2866-77. PubMed ID: 18684910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Olfactory transduction in ciliated receptor neurons of the Cabinza grunt, Isacia conceptionis (Teleostei: Haemulidae).
    Schmachtenberg O; Bacigalupo J
    Eur J Neurosci; 2004 Dec; 20(12):3378-86. PubMed ID: 15610170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amiloride-insensitive cation conductance in Xenopus laevis olfactory neurons: a combined patch clamp and calcium imaging analysis.
    Schild D; Lischka FW
    Biophys J; 1994 Feb; 66(2 Pt 1):299-304. PubMed ID: 8161682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural regeneration dynamics of Xenopus laevis olfactory epithelium after zinc sulfate-induced damage.
    Frontera JL; Raices M; Cervino AS; Pozzi AG; Paz DA
    J Chem Neuroanat; 2016 Nov; 77():1-9. PubMed ID: 27012180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a).
    Pelz D; Roeske T; Syed Z; de Bruyne M; Galizia CG
    J Neurobiol; 2006 Dec; 66(14):1544-63. PubMed ID: 17103386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. T-type Ca2+ channels mediate propagation of odor-induced Ca2+ transients in rat olfactory receptor neurons.
    Gautam SH; Otsuguro KI; Ito S; Saito T; Habara Y
    Neuroscience; 2007 Jan; 144(2):702-13. PubMed ID: 17110049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.
    Han P; Lucero MT
    Neuroscience; 2005; 134(3):745-56. PubMed ID: 16019148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.