These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 164210)
61. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center. Khangulov SV; Sossong TM; Ash DE; Dismukes GC Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506 [TBL] [Abstract][Full Text] [Related]
62. Nuclear magnetic relaxation studies of the role of the metal ion in Mn2(+)-substituted aminoacylase I. Heese D; Berger S; Röhm KH Eur J Biochem; 1990 Feb; 188(1):175-80. PubMed ID: 2318199 [TBL] [Abstract][Full Text] [Related]
63. A direct kinetic assay for mandelate racemase using circular dichroic measurements. Sharp TR; Hegeman GD; Kenyon GL Anal Biochem; 1979 Apr; 94(2):329-34. PubMed ID: 464301 [No Abstract] [Full Text] [Related]
64. 13C NMR studies of the product complex of glyoxalase I. Rosevear PR; Chari RV; Kozarich JW; Sellin S; Mannervik B; Mildvan AS J Biol Chem; 1983 Jun; 258(11):6823-6. PubMed ID: 6853506 [TBL] [Abstract][Full Text] [Related]
65. Nuclear magnetic resonance study of ligand binding to Mn-aspartate transcarbamylase. Fan S; Harrison LW; Hammes GG Biochemistry; 1975 May; 14(10):2219-24. PubMed ID: 807235 [TBL] [Abstract][Full Text] [Related]
66. Electron paramagnetic resonance and water proton relaxation rate studies of formyltetrahydrofolate synthetase-manganous ion complexes. Evidence for involvement of substrates in the promotion of a catalytically competent active site. Buttlaire DH; Reed GH; Himes R J Biol Chem; 1975 Jan; 250(1):261-70. PubMed ID: 166989 [TBL] [Abstract][Full Text] [Related]
67. Magnetic resonance and kinetic studies of the partial complex and Component I subunit forms of Salmonella typhimurium anthranilate synthase. Summerfield AE; Bauerle R; Grisham CM J Biol Chem; 1988 Dec; 263(35):18793-801. PubMed ID: 3058688 [TBL] [Abstract][Full Text] [Related]
68. Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor. Harty ML; Sharma AN; Bearne SL Metallomics; 2019 Mar; 11(3):707-723. PubMed ID: 30843025 [TBL] [Abstract][Full Text] [Related]
69. Kinetic and binding studies of Mn (II) and fructose 1,6-bisphosphate with rabbit liver hexosebisphosphatase. Libby CB; Frey WA; Villafranca JJ; Benkovic SJ J Biol Chem; 1975 Oct; 250(19):7564-73. PubMed ID: 240832 [TBL] [Abstract][Full Text] [Related]
70. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Hong SB; Raushel FM Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883 [TBL] [Abstract][Full Text] [Related]
71. Interactions of phospho- and dephosphosuccinyl coenzyme A synthetase with manganous ion and substrates. Studies of manganese complexes by NMR relaxation rates of water protons. Buttlaire DH; Chon M J Biol Chem; 1977 Mar; 252(6):1957-64. PubMed ID: 321448 [TBL] [Abstract][Full Text] [Related]
72. X- and Q-band EPR studies on the two Mn(2+)-substituted metal-binding sites of D-xylose isomerase. Bogumil R; Kappl R; Hüttermann J; Sudfeldt C; Witzel H Eur J Biochem; 1993 May; 213(3):1185-92. PubMed ID: 8389296 [TBL] [Abstract][Full Text] [Related]
73. Mechanism of the reaction catalyzed by mandelate racemase. 1. Chemical and kinetic evidence for a two-base mechanism. Powers VM; Koo CW; Kenyon GL; Gerlt JA; Kozarich JW Biochemistry; 1991 Sep; 30(38):9255-63. PubMed ID: 1892833 [TBL] [Abstract][Full Text] [Related]
74. (S)-Mandelate dehydrogenase from Pseudomonas putida: mutations of the catalytic base histidine-274 and chemical rescue of activity. Lehoux IE; Mitra B Biochemistry; 1999 Aug; 38(31):9948-55. PubMed ID: 10433701 [TBL] [Abstract][Full Text] [Related]
75. NMR and computer modeling studies of the conformations of glutathione derivatives at the active site of glyoxalase I. Rosevear PR; Sellin S; Mannervik B; Kuntz ID; Mildvan AS J Biol Chem; 1984 Sep; 259(18):11436-47. PubMed ID: 6547959 [TBL] [Abstract][Full Text] [Related]
76. Nuclear magnetic resonance studies of formyltetrahydrofolate synthetase interactions with formate and methylammonium ion. Wendland MF; Stevens TH; Buttlaire DH; Everett GW; Himes RH Biochemistry; 1983 Feb; 22(4):819-26. PubMed ID: 6838826 [TBL] [Abstract][Full Text] [Related]
77. Kinetic and magnetic resonance studies of the mechanism of D-xylose isomerase. I. Binary and ternary complexes with manganese(II), substrates, and inhibitors. Schray KJ; Mildvan AS J Biol Chem; 1972 Apr; 247(7):2034-7. PubMed ID: 4335859 [No Abstract] [Full Text] [Related]
78. Magnetic resonance measurements of intersubstrate distances at the active site of protein kinase using substitution-inert cobalt(III) and chromium(III) complexes of adenosine 5'-(beta, gamma-methylenetriphosphate). Granot J; Mildvan AS; Bramson HN; Kaiser ET Biochemistry; 1980 Jul; 19(15):3537-43. PubMed ID: 6893273 [TBL] [Abstract][Full Text] [Related]
79. 1H nuclear magnetic resonance studies of the conformation of an ATP analogue at the active site of Na,K-ATPase from kidney medulla. Stewart JM; Grisham CM Biochemistry; 1988 Jun; 27(13):4840-8. PubMed ID: 2844241 [TBL] [Abstract][Full Text] [Related]
80. (S)-Mandelate dehydrogenase from Pseudomonas putida: mechanistic studies with alternate substrates and pH and kinetic isotope effects. Lehoux IE; Mitra B Biochemistry; 1999 May; 38(18):5836-48. PubMed ID: 10231535 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]