These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 16421014)

  • 1. Glutathione-related enzymes and the eye.
    Ganea E; Harding JJ
    Curr Eye Res; 2006 Jan; 31(1):1-11. PubMed ID: 16421014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High activities of NADP+-dependent isocitrate dehydrogenase and malic enzyme in rabbit lens epithelial cells.
    Winkler BS; Solomon F
    Invest Ophthalmol Vis Sci; 1988 May; 29(5):821-3. PubMed ID: 3366571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose-6-phosphate dehydrogenase (G-6-PD) reaction in eyeballs of ageing rats.
    Bryk E; Zamorska L
    Folia Histochem Cytochem (Krakow); 1971; 9(4):397. PubMed ID: 5158288
    [No Abstract]   [Full Text] [Related]  

  • 4. Human sperm glutathione reductase activity in situ reveals limitation in the glutathione antioxidant defense system due to supply of NADPH.
    Storey BT; Alvarez JG; Thompson KA
    Mol Reprod Dev; 1998 Apr; 49(4):400-7. PubMed ID: 9508091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revival of glutathione reductase in human cataractous and clear lens extracts by thioredoxin and thioredoxin reductase, in conjunction with alpha-crystallin or thioltransferase.
    Yan H; Harding JJ; Xing K; Lou MF
    Curr Eye Res; 2007 May; 32(5):455-63. PubMed ID: 17514531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme activities and crystallin profiles of clear and cataractous lenses of the RCS rat.
    Dovrat A; Ding LL; Horwitz J
    Exp Eye Res; 1993 Aug; 57(2):217-24. PubMed ID: 8405188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in glutathione, glutathione-linked enzymes and hexose monophosphate shunt enzymes in senile cataract.
    George S; Jyothi M; Mathew B; Shashidhar S
    Indian J Physiol Pharmacol; 2003 Apr; 47(2):191-6. PubMed ID: 15255623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian small stress proteins protect against oxidative stress through their ability to increase glucose-6-phosphate dehydrogenase activity and by maintaining optimal cellular detoxifying machinery.
    Préville X; Salvemini F; Giraud S; Chaufour S; Paul C; Stepien G; Ursini MV; Arrigo AP
    Exp Cell Res; 1999 Feb; 247(1):61-78. PubMed ID: 10047448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-6-phosphate dehydrogenase activity and NADPH/NADP+ ratio in liver and pancreas are dependent on the severity of hyperglycemia in rat.
    Díaz-Flores M; Ibáñez-Hernández MA; Galván RE; Gutiérrez M; Durán-Reyes G; Medina-Navarro R; Pascoe-Lira D; Ortega-Camarillo C; Vilar-Rojas C; Cruz M; Baiza-Gutman LA
    Life Sci; 2006 Apr; 78(22):2601-7. PubMed ID: 16325866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated Expression of indoleamine 2,3-dioxygenase (IDO) and accumulation of kynurenic acid in the pathogenesis of STZ-induced diabetic cataract in Wistar rats.
    Kanth VR; Lavanya K; Srinivas J; Raju TN
    Curr Eye Res; 2009 Apr; 34(4):274-81. PubMed ID: 19373575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of thioltransferase (glutaredoxin) in ocular tissues.
    Wu F; Wang GM; Raghavachari N; Lou MF
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):476-80. PubMed ID: 9501856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of catalase amplification on immortal lens epithelial cell lines.
    Yang Y; Spector A; Ma W; Wang RR; Larsen K; Kleiman NJ
    Exp Eye Res; 1998 Dec; 67(6):647-56. PubMed ID: 9990330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methotrexate: pentose cycle and oxidative stress.
    Babiak RM; Campello AP; Carnieri EG; Oliveira MB
    Cell Biochem Funct; 1998 Dec; 16(4):283-93. PubMed ID: 9857491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutathione, altruistic metabolite in fungi.
    Pócsi I; Prade RA; Penninckx MJ
    Adv Microb Physiol; 2004; 49():1-76. PubMed ID: 15518828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in erythrocyte glucose-6-phosphate dehydrogenase (G6PD) and reduced glutathione (GSH) activities in the development of senile and diabetic cataracts.
    Chandrasena LG; De Silva LD; De Silva KI; Dissanayaka P; Peiris H
    Southeast Asian J Trop Med Public Health; 2008 Jul; 39(4):731-6. PubMed ID: 19058613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a tryptophan supplemented diet and U.V. radiation on the rat lens.
    Mathur RL; Sahai P
    Lens Eye Toxic Res; 1990; 7(2):143-60. PubMed ID: 2275928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV light increases vitamin C uptake by bovine lens epithelial cells.
    Corti A; Ferrari SM; Lazzarotti A; Del Corso A; Mura U; Casini AF; Paolicchi A
    Mol Vis; 2004 Aug; 10():533-6. PubMed ID: 15316465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the presence of thioltransferase in the lens.
    Raghavachari N; Lou MF
    Exp Eye Res; 1996 Oct; 63(4):433-41. PubMed ID: 8944550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GSSG-reducing activity in lenses deficient in glucose-6-phosphate dehydrogenase.
    Cheng HM; Chylack LT; Sang CN; Orzalesi N; Corongiu FP
    Metab Pediatr Syst Ophthalmol; 1983; 7(1):53-7. PubMed ID: 6621360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and distribution of thiol-regulating enzyme glutaredoxin 2 (GRX2) in porcine ocular tissues.
    Upadhyaya B; Tian X; Wu H; Lou MF
    Exp Eye Res; 2015 Jan; 130():58-65. PubMed ID: 25479045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.